
Scientific Programming:
Algorithms (part B)

Introduction

Luca Bianco - Academic Year 2019-20
luca.bianco@fmach.it
[credits: thanks to Prof. Alberto Montresor]

Computer Science
 Ph.D. at the University of Verona, Italy, with thesis on Simulation of Biological Systems

Research Fellow at Cranfield University - UK
 Three years at Cranfield University working at proteomics projects (GAPP, MRMaid, X-Tracker…)
 Module manager and lecturer in several courses of the MSc in Bioinformatics

Bioinformatician at IASMA – FEM
 Currently bioinformatician in the Computational Biology Group at Istituto Agrario di San Michele all’Adige –
Fondazione Edmund Mach, Trento, Italy

Collaborator uniTN - CiBio
I ran the Scienitific Programming Lab for QCB for the last couple of years

About me

Organization

Topics

Learning outcomes

Teaching team

Schedule

midterms:
Part A (tomorrow 11:30-13:30 B106— no lab in the afternoon)
Part B (tentatively ~ December, 17th or 19th)

Course material

Lectures:
Material and information: https://sciproalgo2019.readthedocs.io/en/latest/

Practicals:

QCB: https://massimilianoluca.github.io/algoritmi/index.html

Data science: https://datasciprolab.readthedocs.io/en/latest/

[Thanks to Prof. Alberto Montresor for the material]

https://sciproalgo2019.readthedocs.io/en/latest/
https://massimilianoluca.github.io//index.html
https://datasciprolab.readthedocs.io/en/latest/

Course material https://sciproalgo2019.readthedocs.io/en/latest/

https://sciproalgo2019.readthedocs.io/en/latest/

Where we stand...

So far…
we have learnt a bit of Python and we started doing some little examples of data
analysis (saw some libraries, etc…)

From now on..
we will focus on:

- “Solving problems” providing solutions (correctness), possibly in an
efficient way (complexity), organizing data in the most suitable ways (data
structures)

Maximal sum problem

simpler problem

Is the problem clear?

Example:

Maximal sum problem

Is the problem clear?

Example:

simpler problem

Maximal sum problem

Is the problem clear?

Example:

simpler problem

Maximal sum: 18. Any ideas on how to solve this problem?

Solution 1 ~ N^3
Idea:

Given the list A with N elements

Consider all pairs (i,j) such that i ≤ j
Get the elements in A[i:j+1]
Compute the sum of all elements in A[i:j+1]
Update max_so_far if sum ≥ max_so_far

List comprehension… ?

List comprehension… ?

How many
elements?

List comprehension… ?
No thanks!

How many
elements?

N*(N+1)/2 ~ N^2

[1, 4, 8, 0, 2, 5, 4, 7, 11, 8, 18, 15, 17, 3, 7, -1,
1, 4, 3, 6, 10, 7, 17, 14, 16, 4, -4, -2, 1, 0, 3, 7,
4, 14, 11, 13, -8, -6, -3, -4, -1, 3, 0, 10, 7, 9, 2,
5, 4, 7, 11, 8, 18, 15, 17, 3, 2, 5, 9, 6, 16, 13,
15, -1, 2, 6, 3, 13, 10, 12, 3, 7, 4, 14, 11, 13, 4,
1, 11, 8, 10, -3, 7, 4, 6, 10, 7, 9, -3, -1, 2]
→ 91 elements!

If A has 100,000 elements → ~ 40 GB RAM!!!

List comprehension… ?

Stores intervals and
sums!!!

If A has 100,000 elements → ~ 1.3 PB RAM!!!

List comprehension… ?

Important note:

Time and space
(memory) are two
important resources!

[size computed with sys.getsizeof(DATA)]

Solution 1 ~ N^3
Idea:

Given the list A with N elements

Consider all pairs (i,j) such that i ≤ j
Get the elements in A[i:j+1]
Compute the sum of all elements in A[i:j+1]
Update max_so_far if sum ≥ max_so_far

Why N^3 ?

Intuitively,

We have N*(N+1)/2 pairs and the
sum of N numbers takes N
operations.

So: N * [N*(N+1)/2] ~ N^3

Can we do any better than this?

Solution 2 ~ N^2
Observation: There is no point in computing the
same sums over and over again!

If S = sum(A[i:j]) → sum(A[i:j+1]) = S + A[j+1]

Solution 2 ~ N^2
Observation: There is no point in computing the
same sums over and over again!

If S = sum(A[i:j]) → sum(A[i:j+1]) = S + A[j+1]

Tot (i, j)
0, 1, 4, 8, 0, 2, 5, 4, 7, 11, 8, 18, 15, 17, ← (0, x)
 0, 3, 7, -1, 1, 4, 3, 6, 10, 7, 17, 14, 16, ← (1, x)
 0, 4, -4, -2, 1, 0, 3, 7, 4, 14, 11, 13, ← (2, x)
 0, -8, -6, -3, -4, -1, 3, 0, 10, 7, 9,
 0, 2, 5, 4, 7, 11, 8, 18, 15, 17,
 0, 3, 2, 5, 9, 6, 16, 13, 15,
 0, -1, 2, 6, 3, 13, 10, 12,
 0, 3, 7, 4, 14, 11, 13,
 0, 4, 1, 11, 8, 10,
 0, -3, 7, 4, 6,
 0, 10, 7, 9,
 0, -3, -1,
 0, 2 ← (N-1, x)

Maxes (max_so_far)
[1, 4, 8, 8, 8, 8, 8, 8, 11, 11, 18, 18, 18, .., 18]

Solution 2 ~ N^2
Observation: There is no point in computing the
same sums over and over again!

If S = sum(A[i:j]) → sum(A[i:j+1]) = S + A[j+1]

Intuitively, we have to consider N*(N+1)/2 ~ N^2
intervals (for each interval we compute a sum and a
maximum of two values: constant time!)

The space required is just a couple of variables:
constant!

Solution 2 ~ N^2
Tip: use itertools

Accumulate of itertools is done in C so it
is faster

Solution 2 ~ N^2
Tip: use itertools

Accumulate of itertools is done in C so it
is faster

Similar as before but max computed on the accumulated
sum (accumulate “hides” a for loop)

Important note: N intervals, sum of N
elements each time: ~ N^2 operations

The improvement comes from implementation
not algorithm! (code faster by a constant factor)

Solution 3 ~ N log(N)
Divide et impera (Divide and conquer)

Is this correct? Do you see any problem with this?

Idea:
- Split it in two equally sized sublists

- Find maxL as the sum of the maximal

sublist on the left part

- Find maxR as the sum of the maximal
sublist on the right part

- Get the solution as max(maxL, maxR)

Solution 3 ~ N log(N)
Divide et impera (Divide and conquer)

Idea:

- Split it in two equally sized sublists

- Find maxL as the sum of the
maximal sublist on the left part

- Find maxR as the sum of the
maximal sublist on the right part

- maxLL+maxRR is the value of the
maximal sublist accross the two
parts

Solution 3 ~ N log(N)
Divide et impera (Divide and conquer)

Idea:

- Split it in two equally sized sublists

- Find maxL as the sum of the
maximal sublist on the left part

- Find maxR as the sum of the
maximal sublist on the right part

- maxLL+maxRR is the value of the
maximal sublist accross the two
parts

Get the point before the mid-point M and go to the
left until the sum increases.
Repeat starting from M+1.
Result is: max(maxL, maxRR, maxLL+maxR)

Solution 3 ~ N log(N)
Divide et impera (Divide and conquer)

Recursive code: calls itself on a smaller sublist.

Runs in N*log(N) … more on this later

i jm

Solution 3 ~ N log(N)
Divide et impera (Divide and conquer)

Recursive code: can use itertools as before to
accumulate the sum.

Runs in N*log(N) …just a little bit faster, more on
this later

Tip: use itertools

Solution 4 ~ N
Dynamic Programming

Let’s define maxHere[i] as the maximum
value of each sublist that ends in i.

The result is computed from the maximum
slice that ends in any position.

Solution 4 ~ N
Dynamic Programming

Let’s define maxHere[i] as the maximum value of
each sublist that ends in i.

The result is computed from the maximum slice
that ends in any position.

Goes through A once: runs in N

Solution 4 ~ N
Dynamic Programming

A: [1, 3, 4, -8, 2, 3, -1, 3, 4, -3, 10, -3, 2]
max_here: [0, 1, 4, 8, 0, 2, 5, 4, 7, 11, 8, 18, 15, 17]
max_so_far: [0, 1, 4, 8, 8, 8, 8, 8, 8, 11, 11, 18, 18, 18]

Solution 4 ~ N
Dynamic Programming

Stores also the indexes

A: [1, 3, 4, -8, 2, 3, -1, 3, 4, -3, 10, -3, 2]

Max_so_far: [0, 1, 4, 8, 8, 8, 8, 8, 8, 11, 11, 18, 18, 18]
Max_here: [0, 1, 4, 8, 0, 2, 5, 4, 7, 11, 8, 18, 15, 17]
Last: [0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4]
Start: [0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4]
End: [0, 0, 1, 2, 2, 2, 2, 2, 2, 8, 8, 10, 10, 10]

Running times...

Some definitions…

Some history...

Algorithms: the name...

Computational problems: examples

Computational problems: examples

Note: we described a relationship between input and output. Nothing is said on how to compute
the result (that’s the difference between math and computer science :-))

Naive solutions

Computational
Problem

First, let’s translate
the computational
problem into an
algorithm to solve it.

Then, make it more
efficient if possible!

Naive solutions: the code

This is a direct translation of the computational problem. Can we do better?

Algorithm evaluation

Note on efficiency: algorithm efficiency has a bigger impact on performance than technical details
(e.g. using Python vs. C, itertools vs sum etc…)

Efficiency: time and space

Normally, we focus on time because there is a relationship between TIME and SPACE. Intuitively,
Using N^2 space will require at least N^2 time to read the input… Normally, TIME > SPACE

Algorithm evaluation: minimum
How many comparisons do we perform?

This is the most
expensive operation
(might work on ints,
strings, files,...)

If len(S) = n:
for x in 1,...,n:

for y in 1,...,n:
x>y
…

→ n*n comparisons

Naive algorithm has complexity: n^2

Algorithm evaluation: minimum, a better solution
How many comparisons do we perform?

This is the most
expensive operation
(might work on ints,
strings, files,...)

If len(S) = n:
i= 1,...,n-1
S[i] < min_so_far

→ n-1 comparisons

Naive algorithm “has complexity”: n^2

Better algorithm “has complexity”: n-1

Algorithm evaluation: lookup
How many comparisons do we perform?

I compare v with first element, then to
the second etc. when I find it or when I
checked the whole list I stop.

→ n comparisons

Naive algorithm “has complexity”: n

Algorithm evaluation: lookup, better solution
How many comparisons do we perform?

I loop through the list, if I find value > v
I can stop.

Generally faster, but worst case (es.
500 below)

→ n comparisons

Naive algorithm “has complexity”: n
Better algorithm “has complexity”: n

Algorithm evaluation: best, worst and average case
What is the most important case?

Best: lookup(L,1) solved in 1 step.

Worst: lookup(L,10) solved in 9 steps

Average: lookup(L,6) solved in 4 steps

1 2 5 6 7 8 9

1 2 5 6 7 8

1 2 5 6 7 8 9

9

Not interested.
We are never
lucky!!!

Normally, the
most informative
case

Sometimes
interesting

Lookup: more efficient algorithm
The list is sorted…

lookup(L,v)

ex. lookup(L,28) 1 7 12 15 21 27 29 41 57

Lookup: a more efficient algorithm
The list is sorted...

lookup(L,v)

ex. lookup(L,28)

Let’s start considering the
median value, m.

If L[m] = v. Found it!

if L[m] > v. Search L[0:m]

if L[m] <v. Search L[m+1:]

1 7 12 15 21 27 29 41 57

m

Lookup: a more efficient algorithm
The list is sorted...

lookup(L,v)

ex. lookup(L,28)

Let’s start considering the
median value, m.

If L[m] = v. Found it!

if L[m] > v. Search L[0:m] 21 < 28 → ignore L[0:m]

if L[m] <v. Search L[m+1:]

1 7 12 15 21 27 29 41 57

m

Lookup: a more efficient algorithm
The list is sorted...

lookup(L,v)

ex. lookup(L,28)

Let’s start considering the
median value, m.

If L[m] = v. Found it!

if L[m] > v. Search L[0:m] 28 < 29 → ignore L[m+1:]

if L[m] <v. Search L[m+1:]

1 7 12 15 21 27 29 41 57

m

Lookup: a more efficient algorithm
The list is sorted...

lookup(L,v)

ex. lookup(L,28)

Let’s start considering the
median value, m.

If L[m] = v. Found it!

if L[m] > v. Search L[0:m] 28 < 29 → ignore L[m+1:]

if L[m] <v. Search L[m+1:]

1 7 12 15 21 27 29 41 57

m

Lookup: a more efficient algorithm
The list is sorted...

lookup(L,v)

ex. lookup(L,28)

Let’s start considering the
median value, m.

If L[m] = v. Found it!

if L[m] > v. Search L[0:m] 27 != 28 → NOT FOUND

if L[m] <v. Search L[m+1:]

1 7 12 15 21 27 29 41 57

m

Lookup: the recursive code

can stop and check when end == start
but it is similar

Lookup: the recursive code

2 comparisons (==, <) at each call

How many total comparisons?

Anyone wants to try?

Lookup: the recursive code

2 comparisons (==, <) at each call

How many total comparisons?

At beginning 1024 elements…
then 512…
then 256…
then 128…
then 64…
then 32…
then 16…
then 8…
then 4…
then 2…
then 1

→ log2(1024) +1 iterations

Complexity ~ log2 n

Lookup analysis

Correctness

Correctness

The loop invariant helps us proving that the algorithm is correct:

By induction...

Initialization (base case):
Prove that the condition is true before the first iteration

Conservation (inductive step):
If the condition is true before the iteration of the loop, then prove that it
remains true at the end (before the next iteration)

Conclusion:
At the end, the invariant must represent the "correctness" of the algorithm

Correctness of min

Invariant: At the beginning of iteration i of the while loop, min_so_far contains the partial
minimum of the elements in S[0:i].

Base case:
min_so_far = S[0] IS the
minimum of elements in S[0:1]

Induction step:
(assuming min_so_far is the
minimum of S[0:i]) at each
iteration i, min_so_far is
updated IFF S[i] < min_so_far

min_so_far always contains
min of elements S[0:i]

Correctness of lookup

Exercise: prove the correctness of lookup_rec

What is the invariant?

Correctness of lookup

Exercise: prove the correctness of lookup_rec

What is the invariant?

If v is in L, it is located in
L[start:end+1]

Correctness of lookup

Exercise: prove the correctness of lookup_rec.
By induction on n = end - start

Base case (n = 0)

Inductive hypothesis: given a size n, let us assume that the algorithm is correct
for all sizes n’ < n

Inductive step: given inductive hypothesis, prove invariant still holds for size n.

Correctness of lookup

Exercise: prove the correctness of lookup_rec.
By induction on n = end - start

Base case (n = 0): if n == 0, this means that end < start.
The algorithm returns −1. Correct given that if n == 0, v is not present.

Inductive hypothesis: given a size n, let us assume that the algorithm is correct
for all sizes n’ < n

Inductive step: given a size n > 0, let m be the median element.

If L[m]==v, then the algorithm returns m, because m is the actual position of v —>
hence v is in m = start+end//2 that is in L[start:end]

If v < L[m], then if v is present, since S is sorted, it must be located in L[start:m].
By inductive hypothesis, lookup_rec(L, v,start, m-1) will return the correct position
of v if present, or -1 if not present (since m-1 - start is smaller than n).

if v > L[m] is symmetric.

