Scientific Programming:
Algorithms (part B)

Introduction

Luca Bianco - Academic Year 2019-20
luca.bianco@fmach.it
[credits: thanks to Prof. Alberto Montresor]

About me

Computer Science
Ph.D. at the University of Verona, Italy, with thesis on Simulation of Biological Systems

Research Fellow at Cranfield University - UK
Three years at Cranfield University working at proteomics projects (GAPP, MRMaid, X-Tracker...)
Module manager and lecturer in several courses of the MSc in Bioinformatics

Bioinformatician at IASMA - FEM

Currently bioinformatician in the Computational Biology Group at Istituto Agrario di San Michele all’Adige —
Fondazione Edmund Mach, Trento, Italy

Collaborator uniTN - CiBio
| ran the Scienitific Programming Lab for QCB for the last couple of years

Organization

145540 Scientific Programming (12 ECTS, LM QCB)
145685 Scientific Programming (12 ECTS, LM Data Science)

Part A - Programming (23/9-31/10)
Introduction to the Python language and to a collection of

programming libraries for data analysis.

o Mutuated as 145912 Scientific Programming
(LM Math, 6 credits)

Part B - Algorithms (4/11-12/12)

:> Design and analysis of algorithmic solutions. Presentation of the
most important classes of algorithms and evaluation of their
performance.

Topics

e Introduction e Graphs
e Recursion
o Algorithm analysis
e Asymptotic notations e Visits

e Data structure definition

e Data structures o Algorithms on graphs

o High level overview

e Sequences, maps
(ordered /unordered), sets o Divide-et-impera

e Data structure
implementations in Python

e Algorithmic techniques

e Dynamic programming

o Greedy
@ Trees
o Data structure definition o Backtrack
o Visits e NP class: brief overview

Learning outcomes

At the end of the module, students are expected to:

e evaluate algorithmic choices and select the ones that best suit their
problems;

e analyze the complexity of existing algorithms and algorithms
created on their own;

e design simple algorithmic solutions to solve basic problems.

Teaching team

@ Instructor: Dr. Luca Bianco

o Theory lectures, algorithmic exercises
o luca.bianco [AT]| fmach.it

e Teaching assistant: Dr. Massimiliano Luca

o Lab sessions on algorithms (QCB)
o massimiliano.luca [AT] unitn.it

@ Teaching assistant: Dr. David Leoni

o Lab sessions on algorithms (data science)
o david.leoni [AT] unitn.it

Schedule

Week day | Time Room| Description
Monday 14.30-16.30 | A107 | Lecture

Tuesday 15.30-17.30 | A107 | Lab. QCB
Tuesday 15.30-17.30 | A103 | Lab. Data Science

Wednesday | 11.30-13.30 | A107 | Lecture
Thursday 15.30-17.30 | A107 | Lab. QCB
Thursday 15.30-17.30 | A208 | Lab. Data Science

- midterms:
Part A (tomorrow 11:30-13:30 B106— no lab in the afternoon)
Part B (tentatively ¥ December, 17th or 19th)

Course material

Lectures:
Material and information: hitps://sciproalgo2019.readthedocs.io/en/latest/

Practicals:

QCB: https://massimilianoluca.github.io/algoritmi/index.html

Data science: https://datasciprolab.readthedocs.io/en/latest/

[Thanks to Prof. Alberto Montresor for the material]
D

https://sciproalgo2019.readthedocs.io/en/latest/
https://massimilianoluca.github.io//index.html
https://datasciprolab.readthedocs.io/en/latest/

Course material https://sciproalgo2019.readthedocs.io/en/latest/

Scientific Programming: Algorithms

General Info

The contacts to reach me can be found at this page.

Timetable and lecture rooms

Lectures will take place on Mondays from 14:30 to 16:30 (in lecture room A107) and on
Wednesdays from 11:30 to 13:30 (in lecture room A107). This second part of the Scientific
Programming course will tentatively run from 06/11/2019 to 20/12/2019.

Slides
The slides shown during the lectures will gradually appear below:

« Lecture 1: Introduction to algorithms

Teaching assistants

David Leoni (for Data Science)

Massimiliano Luca (for QCB)

Course material

Brad Miller and David Ranum. Problem Solving with Algorithms and Data Structures using Python. An
interactive version is freely available at this link.

Other material includes the following books:

« Lutz. Learning Python (5th edition). O'REILLY (2013)
« Hetland. Python Algorithms: Mastering Basic Algorithms in the Python Language. Apress, 2nd

https://sciproalgo2019.readthedocs.io/en/latest/

Where we stand...

So far...
we have learnt a bit of Python and we started doing some little examples of data
analysis (saw some libraries, etc...)

From now on..
we will focus on:

- “Solving problems” providing solutions (correctness), possibly in an
efficient way (complexity), organizing data in the most suitable ways (data
structures)

Maximal sum problem

e Input: a list A containing n numbers

o Output: a slice (sublist) Afi : j] of maximal sum, i.e. the
slice whose element sum Z‘;C: Alk] is larger or equal than the

sum of any other slice
ﬁ simpler problem

Find the maximal sum, rather than the interval that provides the maximal sum.

Is the problem clear?

Example:

Maximal sum problem

e Input: a list A containing n numbers

o Output: a slice (sublist) Afi : j] of maximal sum, i.e. the
slice whose element sum Zi: Alk] is larger or equal than the

sum of any other slice
ﬁ simpler problem

Find the maximal sum, rather than the interval that provides the maximal sum.

Is the problem clear?

Example:

Maximal sum problem

e Input: a list A containing n numbers

o Output: a slice (sublist) Afi : j] of maximal sum, i.e. the
slice whose element sum Z‘;C: Alk] is larger or equal than the

sum of any other slice
ﬁ simpler problem

Find the maximal sum, rather than the interval that provides the maximal sum.

Is the problem clear?

Example:

1) 341-8] 2| 3(-1] 3| 4/-3[10|-3]|2

Maximal sum: 18. Any ideas on how to solve this problem?

e Input: a list A containing n numbers

e Output: a slice (sublist) Afi : j] of maximal sum, i.e. the

[N A
Solution 1 ™ N"3
slice whose element sum 37 ;1 Alk] is larger or equal than the

Idea: sum of any other slice
Given the list A with N elements

(1] 3]4]-8[2]3[1[3[4[-3]10]-3]2]

Consider all pairs (i,j) such thati<j

Get the elements in A[ij+1]

Compute the sum of all elements in A[i:j+1]
Update max_so_far if sum > max_so_far

def max sum v1(A):
max so far = 0
N = len(A)
for i in range(N):
for j in range(i,N):
tmp sum = sum (A[i:j+1])
max so far = max(tmp sum, max so far)

return max so far

A=][13,4-8,2, 3,-1,3,4,-3,10,-3,2]
print(A)
print(max _sum v1(A))

[lv 31 41 -81 2: 3: -ll 3r 41 '31 10: -31 2]
18

,? e Input: a list A containing n numbers

List comprehension... -

o Output: a slice (sublist) A[i : j] of maximal sum, i.e. the
slice whose element sum ch;i Alk] is larger or equal than the
sum of any other slice

def max sum vl listc 1(A):
N = len(A)
sums = [sum(A[i:j+1]) for i in range(N) for j in range(i,N)]

return max(sums)

A=][1,3,4,-8,2, 3,-1,3,4,-3,10,-3,2]
print(A)
print(max sum vl listc 1(A))

[11 3: 4' -8: 2: 31 -11 3: 41 -31 191 -31 2]
18

? e Input: a list A containing n numbers

List comprehension... -

o Output: a slice (sublist) A[i : j] of maximal sum, i.e. the
slice whose element sum ch;i Alk] is larger or equal than the
sum of any other slice

def max sum vl listc 1(A):
N = len(A)
sums = [sum(A[i:j+1]) for i in range(N) for j in range(i,N)] « How many

elements?
return max(sums)

A=1[13,4,-8,2, 3,-1,3,4,-3,10,-3,2]
print(A)
print(max sum vl listc 1(A))

[11 3: 4' -8: 2: 31 -11 3: 41 -31 191 -31 2]
18

? e Input: a list A containing n numbers

List comprehension... -

o Output: a slice (sublist) A[i : j] of maximal sum, i.e. the
slice whose element sum Zf;i Alk] is larger or equal than the
No thanks! sum of any other slice

def max sum vl listc 1(A):
N = len(A)
sums = [sum(A[i:j+1]) for i in range(N) for j in range(i,N)] <::| How many

elements?
return max(sums)

A=1[1,3,4-8,2, 3,-1,3,4,-3,10,-3,2]

print(A) N*(N+1)/2 ~ N*2

print(max sum vl listc 1(A))

[1,:3..°4, =By 2, 3 =134, <3, 189, =352}

18
[1,4,8,0,2,5,4,7,11,8,18,15,17,3,7, -1,
1,4,3,6,10,7,17,14,16,4,-4,-2,1,0, 3, 7,
4,14,11,13,-8,-6,-3,-4,-1,3,0,10,7, 9, 2,
54,7,11,8,18,15,17,3,2,5,9, 6, 16, 13,
15,-1,2,6, 3, 13,10, 12, 3,7, 4, 14, 11, 13, 4,
1,11,8,10,-3,7,4,6,10,7,9,-3, -1, 2]
— 91 elements!

If A has 100,000 elements » ¥ 40 GB RAM!!!

? e Input: a list A containing n numbers

List comprehension... -

o Output: a slice (sublist) A[i : j] of maximal sum, i.e. the
slice whose element sum Zi;i Alk] is larger or equal than the
sum of any other slice

def max sum vl listc(A):

N = len(A)

intervals = [A[i:j+1] for i in range(N) for j in range(i,N)]

sums = [sum(vals) for vals in intervals] ‘ Stores intervals and
return max(sums)

sums!!!
A=1[1,3,4,-8,2, 3,-1,3,4,-3,10,-3,2]
print(A)
print(max sum vl listc(A))

[1v 31 4: '81 21 3! '1: 3: 4! '31 10: '31 2]
18

If A has 100,000 elements » ™~ 1.3 PB RAM!!!

e Input: a list A containing n numbers

List comprehension... ?

o Output: a slice (sublist) A[i : j] of maximal sum, i.e. the
slice whose element sum Zi;i Alk] is larger or equal than the
sum of any other slice

le7
6 - — vl
— v1_listComp

5 vl listComp_1
)
3
£ 3-
£
B 5] Important note:
3

1- Time and space

(memory) are two
01, : . : : , important resources!
0 200 400 600 800 1000
List size

[size computed with sys.getsizeof(DATA)]

. e Input: a list A containing n numbers
Solution 1 ¥ N*3

o Output: a slice (sublist) A[i : j] of maximal sum, i.e. the
slice whose element sum 4 ;1 Alk] is larger or equal than the
Idea: sum of any other slice
Given the list A with N elements

Consider all pairs (i,j) such thati <j

Get the elements in A[ij+1]

Compute the sum of all elements in A[i:j+1]
Update max_so_far if sum > max_so_far

Why N*3 ?
def max sum v1(A):
max so far = 0
N = len(A) Intuitively,
for i in range(N):
for j in range(i,N): We have N*(N+1)/2 pairs and the

tmp sum = sum (A[i:j+1])

sum of N numbers takes N
max so far = max(tmp sum, max so far)

operations.

return max so far
So: N * [N*(N+1)/2] ¥ N3

Can we do any better than this?

Solution 2 ¥ N2

Observation: There is no point in computing the

same sums over and over again!

If S =sum(A[i;j]) = sum(A[ij+1]) =S + A[j+1]

def max sum v2(A):
N = len(A)
max so far = @
for i in range(N):
tot = 0 #ACCUMULATOR!
for j in range(i,N):
tot = tot + A[j]
max so far =
return max so far

A=][1,3,4,-8,2, 3,-1,3,4,-3,10,-3,2]
print(A)
print(max_sum v2(A))

[1, 3, 4, '8, 2; 3!
18

-1, 354, -3, 28,

max(max so far, tot)

-3, 21

e Input: a list A containing n numbers

o Output: a slice (sublist) A[i : j] of maximal sum, i.e. the
slice whose element sum 4 ;1 Alk] is larger or equal than the
sum of any other slice

Solution 2 ¥ N2

Observation: There is no point in computing the
same sums over and over again!

o Output: a slice (sublist) Afi :
slice whose element sum 4 ;1

sum of any other slice

If S =sum(A[i;j]) = sum(A[ij+1])) =S + A[jH1]

Tot

def max sum v2(A):
= len(A)

)
0,1,4,8,0,2,5,4,7, 11,8, 18,15, 17, — (0, X)
0,3,7,-1,1,4,3,6,10,7, 17, 14,16, « (1
1,0,3,7, 4,14, 11, 13, — (2, %)

e Input: a list A containing n numbers

j] of maximal sum, i.e. the
Alk] is larger or equal than the

(i,]

» X)

0, -8, -6, 3,4,1,3 0,10,7,9,
max_so far = @ 0,2,5,4,7,11,8, 18, 15, 17,
for i in range(N): 0,3,2,5,9,6, 16,13, 15,
tot = 0 #ACCUMULATOR! 0,-1,2,6, 3,13, 10, 12
for j in range(i,N): 0,3,7,4,14,11,13
tot = tot + A[j] 0,4,1, 11,8, 10,
max_so_far = max(max_so far, tot) 0,-3,7,4,86,
return max so far 0,10,7,9,
0, -3, -1,
= [1,3,4,-8,2, 3,-1,3,4,-3,10,-3,2] 0.2 (N1, %)
print(A)
print(max_sum v2(A)) Maxes (max_so_far)

=
&> X%

[1,.3,%, 8, 2, 3
18

-1, 3,-4, -3, 10, =3, 2]

,8,8,8,8,8,8,11, 11,18, 18, 18, .., 18]

Solution 2 ¥ N2

Observation: There is no point in computing the
same sums over and over again!

If S =sum(A[i;j]) = sum(A[ij+1]) =S + A[j+1]

def max sum v2(A):
N = len(A)
max so far = @
for i in range(N):
tot = 0 #ACCUMULATOR!
for j in range(i,N):
tot = tot + A[j]
max so far = max(max so far, tot)
return max so far

A=][1,3,4,-8,2, 3,-1,3,4,-3,10,-3,2]
print(A)
print(max_sum v2(A))

1, 3, 4, -8, 2, 3, -1, 3, 4, -3, 19, -3, 2]
18

e Input: a list A containing n numbers

o Output: a slice (sublist) A[i : j] of maximal sum, i.e. the
slice whose element sum 4 ;1 Alk] is larger or equal than the
sum of any other slice

Intuitively, we have to consider N*(N+1)/2 ~ N*2
intervals (for each interval we compute a sum and a
maximum of two values: constant time!)

The space required is just a couple of variables:
constant!

Solution 2 ¥ N2

Tip: use itertools

Accumulate of itertools is done in C so it
is faster

e Input: a list A containing n numbers

o Output: a slice (sublist) A[i : j] of maximal sum, i.e. the

slice whose element sum Zi;i Alk] is larger or equal than the
sum of any other slice

from itertools import accumulate

A = list(range(10))
print(A)
print(list(accumulate(A)))

[ei 1' 2' 3' 4! 5I 6! 7! 8I 9]
[e, 4.3, 6. 18, 15, 21, 28, 36, 45]

. e Input: a list A containing n numbers
Solution 2 ™ N"2

o Output: a slice (sublist) A[i : j] of maximal sum, i.e. the
slice whose element sum 4 ;1 Alk] is larger or equal than the

Tip: use itertools sum of any other slice
Accumulate of itertools is done in C so it from itertools import accumulate
is faster

A = list(range(10))
print(A)
print(list(accumulate(A)))

from itertools import accumulate [85 F:2e8wds 5 65 Ts8%:9]
[@; 2. :3, .76, 10, 15, 21, 28, 36, 45]
def max sum v2 bis(A):
N = len(A)
max so far = 0

for i in range(N): o
tot = max(accumulate(A[i:])) <t::] Smubrasbekwe?u?mézcompmedontheacmﬂnMamd
sum (accumulate “hides” a for loop)

max so far = max(max so far,tot)
return max so far

Important note: N intervals, sum of N

A= [1,3,4,-8,2, 3,-1,3,4,-3,16,-3,2] elements each time: ~ NA2 operations
print(A)
print(max sum v2 bis(A))

The improvement comes from implementation

IR, 308 “8e Zp B Sl Bl =3, A8, 53,21 not algorithm! (code faster by a constant factor)

18

e Input: a list A containing n numbers

o Output: a slice (sublist) A[i : j] of maximal sum, i.e. the

Solution 3 ™ N log(N)
slice whose element sum Zi;i Alk] is larger or equal than the

Divide et impera (Divide and conquer) sum of any other slice

Idea:
- Splititin two equally sized sublists

- Find maxL as the sum of the maximal
sublist on the left part

- Find maxR as the sum of the maximal
sublist on the right part

- Get the solution as max(maxL, maxR)

maxL maxR

Is this correct? Do you see any problem with this?

e Input: a list A containing n numbers

e Output: a slice (sublist) Afi : j] of maximal sum, i.e. the

Solution 3 ™ N log(N)
slice whose element sum Zj ;1 Alk] is larger or equal than the

Divide et impera (Divide and conquer) sum of any other slice
Idea:

- Splititin two equally sized sublists

- Find maxL as the sum of the
maximal sublist on the left part

- Find maxR as the sum of the
maximal sublist on the right part

- maxLL+maxRR is the value of the
maximal sublist accross the two
parts

maxL maxLL maxRR maxR

e Input: a list A containing n numbers

o Output: a slice (sublist) A[i : j] of maximal sum, i.e. the

Solution 3 ™ N log(N)
slice whose element sum Zi;i Alk] is larger or equal than the

Divide et impera (Divide and conquer) sum of any other slice
Idea:

- Splititin two equally sized sublists

- Find maxL as the sum of the
maximal sublist on the left part

- Find maxR as the sum of the Get the point before the mid-point M and go to the
maximal sublist on the right part left until the sum increases.
Repeat starting from M+1.

- maxLL+maxRR is the value of the Result is: max(maxL, maxRR, maxLL+maxR)

maximal sublist accross the two
parts

maxL maxLL maxRR maxR

. N e Input: a list A containing n numbers
Solution 3 ™ N log(N)))

o Output: a slice (sublist) A[i : j] of maximal sum, i.e. the
slice whose element sum 4 ;1 Alk] is larger or equal than the

Divide et impera (Divide and conquer) sum of any other slice
def max sum v3 rec(A, i, j):

if i == j:
return max(@, A[i])

m= (i+j)//2

maxML = ©

s =0

for k in range(m,i-1,-1):
s = s + A[k]
maxML = max(maxML, s)

maxMR = 0

s =0

£as }"srj“?\?'((';”lv L) Recursive code: calls itself on a smaller sublist.
maxMR = max(maxMR, s)

maxL = max_sum_v3_rec(A,i,m) #Left maximal subvector Runs in N*log(N) ... more on this later

maxR = max_sum v3 rec(A,m+1,j) #Right maximal subvector

return max(maxL, maxR, maxML + maxMR)

def max sum v3(A):
return max_sum v3 rec(A,0,len(A) - 1)

A w[1,9.4,¢8,2. 3,1.3.4,«3,18,»3.2] [m j
print(A)
print (max_sum_v3(A)) HEEENEEEEEEEET TN

[1;:35:4; =85 2; 3; =1,3;:4; =3; 10; «3;:2] maxL maxR
18

. N e Input: a list A containing n numbers
Solution 3 ™ N log(N)))

e Output: a slice (sublist) Afi : j] of maximal sum, i.e. the

Divide et impera (Divide and conquer)
Tip: use itertools

def max sum v3 rec bis(A,i,j):

if i == j:
return max(0,A[i])
m= (i+j)//2

maxL = max sum v3 rec bis(A,i,m)

maxR = max sum v3 rec bis(A, m+1l, j)

maxML = max(accumulate(A[m:-len(A) + i -1: -1]))
maxMR = max(accumulate(A[m+1:j+1]))

return max(maxL, maxR, maxML+ maxMR)

def max sum v3(A):
return max sum v3 rec bis(A,0,len(A) - 1)

A=1][1,3,4,-8,2, 3,-1,3,4,-3,10,-3,2]
print(A)
print(max_sum v3(A))

[1: 3: 4: -81 2: 31 -l: 31 4: '31 101 -31 2]
18

slice whose element sum 37 ;1 Alk] is larger or equal than the
sum of any other slice

-14 -13 -12 -1 .10 9 -8 -7 6 -5 -4 -3 -2 -1

A = list(range(10))
print(A)

#interval 4-2 going to the left...
M=4

print(-len(A) + 2 - 1)

A[M: -len(A) + 2 -1 : -1]

[e, 1, 2, 3, 4, 5, 6, 7, 8, 9]
-9

[4, 3, 2]

Recursive code: can use itertools as before to
accumulate the sum.

Runs in N*log(N) ...just a little bit faster, more on
this later

e Input: a list A containing n numbers

e Output: a slice (sublist) Afi : j] of maximal sum, i.e. the

: n
Solution 4 ™ N
slice whose element sum Zj ;1 Alk] is larger or equal than the

Dynamic Programming sum of any other slice

Let’s define maxHere[i] as the maximum
value of each sublist that ends in i.

The result is computed from the maximum
slice that ends in any position.

0 1 <0

Here|i| =
mazHereli] max(mazHere[i — 1] + A[i],0) ¢ >0

e Input: a list A containing n numbers

e Output: a slice (sublist) Afi : j] of maximal sum, i.e. the

H nJ
Solution4 ™ N
slice whose element sum 37 ;1 Alk] is larger or equal than the

Dynamic Programming sum of any other slice

Let’s define maxHere[i] as the maximum value of
each sublist that ends ini.

The result is computed from the maximum slice
that ends in any position.

. def max sum v4(A):
mazHereli] = {0 i <0 max_so far = 0 #Max found so far
max(mazHere[i — 1] 4+ A[i],0) >0 max_here = 0 #Max slice ending at cur pos
for i in range(len(A)):
max_here = max(A[i] + max _here, 0)
max_so far = max(max _so far, max here)
return max so far

A=113,4,-8,2, 3,-1,3,4,-3,10,-3,2]
print("{}".format(A))
print(max_sum v4(A))

[11 3: 41 '8: 2r 3: 'lp 3: 4: '31 10: '3; 2]
18
Goes through A once: runs in N

Solution4 “ N

Dynamic Programming

def max sum v4(A):
max_so_far = 0 #Max found so far
max_here = 0 #Max slice ending at cur pos
for i in range(len(A)):
max_here = max(A[i] + max_here, 0)
max_so far = max(max _so far, max here)
return max so far

A =[1,3;4,-8,2; 3,-1.3,4,-3,10,-3,2]
print("{}".format(A))
print(max_sum v4(A))

(1, 3, 4, -8, 2, 3, -1, 3, 4, -3, 16, -3, 2]
18

e Input: a list A containing n numbers

o Output: a slice (sublist) A[i : j] of maximal sum, i.e. the
slice whose element sum Zi;i Alk] is larger or equal than the
sum of any other slice

A: [1,3,
max_here: [0, 1, 4,
max_so_far: [0, 1,4

4,-8,2,3,-1,3,4,-3,10, -3, 2]
8,0,2,5,4,7,11, 8, 18, 15, 17]
8,8,8,8,8,8, 11, 11,18, 18, 18]

Solution4 “ N

Dynamic Programming
Stores also the indexes

def max sum v4 bis(A):
max_so_far = @ #Max found so far
max_here = 0 #Max slice ending at cur pos
start = 0 #start of cur maximal slice
end = 0 #end of cur maximal slice
last = © #beginning of max slice ending here
for i in range(len(A)):
max_here = A[i] + max_here
if max _here <= 0:
max_here = ©
last =i +1
if max _here > max so far:
max so far = max here
start = last
end = 1

return (start,end,max so far)

A =][1,3,4,-8,2, 3,-1,3,4,-3,10,-3,2]
print("A: {}".format(A))
print(max sum v4 bis(A))

A: 1, 3,4, -8, 2, 3, <1, 3,4, ~3, 16, =3, 21
(4, 10, 18)

e Input: a list A containing n numbers

o Output: a slice (sublist) A[i : j] of maximal sum, i.e. the
slice whose element sum Zi;i Alk] is larger or equal than the
sum of any other slice

A: [1,3,4,-8,2, 3, -1,3,4,-3,10, -3, 2]
Max_so_far: [0, 1,4, 8,8,8,8,8,8, 11, 11, 18, 18, 18]
Max_here: [0, 1,4,8,0,2,5,4,7, 11,8, 18, 15, 17]
Last: [0,0,0,0,4,4, 4 4 4 4 4 4 4, 4]
Start: [0,0,0,0,0,0,0,0,0,4,4,4,4, 4]

End: [0,0,1,2,2,2,2,2,2,8,8,10, 10, 10]

e Input: a list A containing n numbers

Running times...

o Output: a slice (sublist) A[i : j] of maximal sum, i.e. the
slice whose element sum Zi;i Alk] is larger or equal than the
sum of any other slice

100000
— O(n3)
: —— 0(n?)
80000 A ----- 0(n?) (accumulate)
: —— O(nlogn)
----- O(nlogn) (accumulate)
— 0(n)
—~ 60000 A
7]
E
Q
£
F 40000 -
20000 A
0 = l‘—— T T T
2000 4000 6000 8000 10000
Size

Some definitions...

Computational problem

The formal relationship between the input and the desired output

Algorithm

@ The description of the sequence of actions that an executor
must execute to solve the problem

@ Among their tasks, algorithms represent and organize the
input, the output, and all the intermediate data required for
the computation

Some history...

@ Ahmes’ Papyrus (1850 BC, peasant algorithm for multiplication)

@ Numerical algorithms have been studied by Babylonians and
Indian mathematicians
@ Algorithms used even today have been studies by Greek
mathematicians more than 2000 years ago
e Euclid’s Algorithm for the greatest common divisor

o Geometrical algorithms (angle bisection and trisection, tangent
drawing, etc)

Algorithms: the name...

- Abu Abdullah Muhammad bin Musa al-Khwarizmi

e He was a Persian mathematician, astronomer,
astrologer, geographer

e He introduced the indian numbers in the western
world

@ From his name: algorithm

\

- Al-Kitab al-muhtasar fi hisab al-gabr wa-l-muqgabala -

e His most famous work (820 AC)
e Translated in Latin with the title: Liber algebrae
et almucabala

Computational problems: examples

Minimum

The minimum of a set S is the element of S which is smaller or
equal that any other element of S.

min(S) =a< Jae€S:Vbe S:a<b

Looukp
Let S = sg,s1,...,8,—1 be a sequence of distinct, sorted numbers,
ie. sp < s1 <...< sp—1. To perform a lookup of the position of

value v in S corresponds to returning the index ¢ such that 0 <1 < n,
if v is contained at position ¢z, —1 otherwise.

i Fe{0,...,n—1}:5;=v

—1 otherwise

lookup(S,v) = {

Computational problems: examples

Minimum

The minimum of a set S is the element of S which is smaller or
equal that any other element of S.

min(S) =a< JacS:Vbe S:a<b

Looukp
Let S = sg,5s1,...,8,—1 be a sequence of distinct, sorted numbers,
ie. sp < 81 < ...< sp—1. To perform a lookup of the position of

value v in S corresponds to returning the index ¢ such that 0 < i < n,
if v is contained at position 7, —1 otherwise.

lookup (S, v) = —1 otherwise

{i Jie {0,....,n—1}:S;=v

Note: we described a relationship between input and output. Nothing is said on_how to compute
the result (that’s the difference between math and computer science :-))

Naive solutions

Minimum
To find the minimum of a set, compare each element with every

other element; the element that is smaller than any other is the
minimum.

Lookup

To find a value v in the sequence S, compare v with any other
element of S, in order, and return the corresponding index if a
correspondence is found; returns —1 if none of the elements is equal
to v.

Computational
Problem

$

First, let’s translate
the computational
problem into an
algorithm to solve it.

Then, make it more
efficient if possible!

Naive solutions: the code

def my min(S): def lookup(L, v):
for x in S: for i in range(len(L)):
isMin = True if L[ii == v:
3 o return 1
il {fl: E.y- return -1
.. . AisMin = False my list = [1, 3, 5, 11, 17, 121, 443]
if isMin:

print(my list)

print("{} in pos: {}".format(17,

lookup(my list, 17)))
A= [7:=2:9:121; =3, 4;:13] print("{} in pos: {}".format(4,
lookup(my list, 4)))

return x

print(A)
print("min: {}".format(my min(A)))

e 535055 Yy 17, 121, 443
[7, -1, 9, 121, -3, 4, 13] {7 i poe . !
min: -3 4 in pos: -1

This is a direct translation of the computational problem. Can we do better?

Algorithm evaluation

Does it solve the problem in a correct way?

e Mathematical proof vs informal description
@ Some problems can only be solved in an approximate way

@ Some problems cannot be solved at all

Does it solve the problem in an efficient way?

e How to measure efficiency
@ Some solutions are optimal: you cannot find better solutions

e For some problems, there are no efficient solutions

Note on efficiency: algorithm efficiency has a bigger impact on performance than technical details
(e.g. using Python vs. C, itertools vs sum etc...)

Efficiency: time and space

Algorithm complexity

Analysis of the resources employed by an algorithm to solve a pro-
blem, depending on the size and the type of input

Resources

e Time: time needed to execute the algorithm

e Should we measure it with a cronometer?
o Should I measure it by counting the number of elementary
operations?

@ Space: amount of used memory

e Bandwidth: amount of bit transmitted (distributed
algorithms)

Normally, we focus on time because there is a relationship between TIME and SPACE. Intuitively,
Using N*2 space will require at least N*2 time to read the input... Normally, TIME > SPACE

Algorithm evaluation: minimum

How many comparisons do we perform?

def my min(S):

for x in S:
isMin = True o
for y in S: This is the most
if x > y: - expensive operation
isMin = False (might work on ints,
if isMin: strings, files,...)
return x

A=[7, -1, 9,121, -3, 4, 13]

print(A)
print("min: {}".format(my min(A)))

75 =1; 9; 121; -3, 4; 13}
min: -3

If len(S) = n:
for x in1,...,n:
foryini,...,n:
x>y

= Nn*n comparisons

Naive algorithm has complexity: n*2

Algorithm evaluation: minimum, a better solution

How many comparisons do we perform?

def

A=[7, -1, 9,121, -3, 4,

my faster min(S):

min so far = S[0] #first element

i |
while i < len(S):

if S[i] < min so far:

min so far = S[i]

i=1+1
return min so far

print(A)
print("min: {}".format(my min(A)))

[7, <1,:9; 121; =3, 4, 13]

min:

=3

13]

-

This is the most
expensive operation
(might work on ints,
strings, files,...)

If len(S) = n:

i=1,...,n-1

S[i] < min_so_far
= n-1 comparisons

Naive algorithm “has complexity”: n*2

Better algorithm “has complexity”: n-1

Algorithm evaluation: lookup

How many comparisons do we perform?

def lookup(L, v):
for i in range(len(L)):

3F L[] = v:
return i
return -1

my list = [1, 3, 5, 11, 17, 121, 443]
print(my_list)
print("{} in pos: {}".format(17,

lookup(my list, 17)))
print("{} in pos: {}".format(4,

lookup(my list, 4)))

il 35755 TE,. 17, 321,.4943]
17 in pos: 4
4 in pos: -1

| compare v with first element, then to
the second etc. when | find it or when |
checked the whole list | stop.

= N comparisons

Naive algorithm “has complexity”: n

Algorithm evaluation: lookup, better solution

How many comparisons do we perform?

def lookup(L, v)

for i in range(len(L)):
if L[] =v:
return i
elif L[i] > v:
return -1

return -1
my list = [1, 3,
print(my list)
print("{} in pos

print("{} in pos

print("{} in pos

E1;:35: 55 113 7
17 in pos: 4
4 in pos: -1

500 in pos: -1

5, 11, 17, 121, 443]

: {}".format (17,

lookup(my list, 17)))
: {}".format (4,

lookup(my list, 4)))

: {}".format (500,
lookup(my list, 4)))

, 121, 443]

| loop through the list, if | find value > v
| can stop.

Generally faster, but worst case (es.
500 below)

= N comparisons

Naive algorithm “has complexity”: n
Better algorithm “has complexity”: n

Algorithm evaluation: best, worst and average case

What is the most important case?

Not interested.

Best: lookup(L,]) solved in 1 step. Zl...... -
e are never

lucky!!

Normally, the

Worst: lookup(L,10) solved in 9 steps ¢ most informative

case

Sometimes

Average: lookup(L,6) solved in 4 steps ...@... Lo interesting

Lookup: more efficient algorithm

The list is sorted...

lookup(L,v)

ex.lookup(L28) 17T 12015 21 27 29 (41 67

Lookup: a more efficient algorithm

The list is sorted...
lookup(L,v)
ex. lookup(L,28)
Let’s start considering the
median value, m.
If Lim] =v. Found it!
if Lim] > v. Search L[0:m]

if L[m] <v. Search L[m+1:]

21

Lookup: a more efficient algorithm

The list is sorted...

lookup(L,v)

ex. lookup(L,28) 21 ----

Let’s start considering the
median value, m.

If Lim] =v. Found it!
if Lim] > v. Search L[0:m] 21<28 = ignore L[O:m]

if L[m] <v. Search L[m+1:]

Lookup: a more efficient algorithm

The list is sorted...

lookup(L,v)

ex. lookup(L,28) -

Let’s start considering the
median value, m.

If Lim] =v. Found it!
if Lim] > v. Search L[0:m] 28 <29 =»ignore L[m+1:]

if L[m] <v. Search L[m+1:]

29

Lookup: a more efficient algorithm

The list is sorted...

lookup(L,v)

ex. lookup(L,28) -

Let’s start considering the
median value, m.

If Lim] =v. Found it!
if Lim] > v. Search L[0:m] 28 <29 =»ignore L[m+1:]

if L[m] <v. Search L[m+1:]

29

Lookup: a more efficient algorithm

The list is sorted...

lookup(L,v) m
ex. lookup(L,28) 27
Let’s start considering the

median value, m.

If Lim] =v. Found it!

if Lim] > v. Search L[O:m] 27 !'=28 » NOT FOUND

if L[m] <v. Search L[m+1:]

Lookup: the recursive code

def lookup rec(L, v, start,end):

if end < start: - can stop and check when end == start

return -1
else: but it is similar
m = (start + end)//2
if L[m] == v: #found!
return m
elif v < L[m]: #look to the left
return lookup rec(L, v, start, m-1)
else: #look to the right

return lookup rec(L, v, m+l, end)

my list = [1, 3, 5, 11, 17, 121, 443]
print(my list)
print("{} in pos: {}".format(17,
lookup rec(my list, 17, 0, len(my list)-1)))
print("{} in pos: {}".format(4,
lookup rec(my list, 4, 0, len(my list)-1)))

print("{} in pos: {}".format(443,
lookup rec(my list, 443, 0, len(my list)-1)))

[1: 3; 5; 11, 37,121, 443}
17 in pos: 4
4 in pos: -1
443 in pos: 6

Lookup: the recursive code

def lookup rec(L, v, start,end):
if end < start: 2 comparisons (==, <) at each call
return -1
else:
m = (start + end)//2
if L[m] == v: #found!
return m
elif v < L[m]: #look to the left
return lookup rec(L, v, start, m-1)
else: #look to the right
return lookup rec(L, v, m+l, end)

How many total comparisons?

Anyone wants to try?

my list = [1, 3, 5, 11, 17, 121, 443]
print(my list)
print("{} in pos: {}".format(17,
lookup rec(my list, 17, 0, len(my list)-1)))
print("{} in pos: {}".format(4,
lookup rec(my list, 4, 0, len(my list)-1)))

print("{} in pos: {}".format(443,
lookup rec(my list, 443, 0, len(my list)-1)))

[1: 3; 5; 11, 37,121, 443}
17 in pos: 4
4 in pos: -1
443 in pos: 6

Lookup: the recursive code

def lookup rec(L, v, start,end):
if end < start: 2 comparisons (==, <) at each call
return -1
else:
m = (start + end)//2
if L[m] == v: #found!
return m
elif v < L[m]: #look to the left
return lookup rec(L, v, start, m-1)

How many total comparisons?

At beginning 1024 elements...

else: #look to the right then 512...
return lookup rec(L, v, m+l, end) then 256...
then 128...
then 64...
list = [1, 3, 5, 11, 17, 121, 443] then 32...
m)’_ 1s =) ’ r ’ ’ ’
print(my list) then 16...
print("{} in pos: {}".format(17, then 8...
lookup rec(my list, 17, 0, len(my list)-1))) then 4...
print("{} in pos: {}".format(4, then 2
lookup rec(my list, 4, 0, len(my list)-1))) o
B n - then 1
print("{} in pos: {}".format(443,
100kup_reC(my_liSt, 443, 0, 1en(my_list)-1))) - |Og2(1024) +1 Itel’atlons
[1,‘3, 5, 11, 17,-121, 443]
17 in pos: 4 Complexity ~ log2 n

4 in pos: -1
443 in pos: 6

Lookup analysis

Operations

1000 -

= |ookup: ~n
= lookup_rec: ~log2(n)

0 200 400 600
Input size [n]

800

1000

Operations

10 A

200

400 600
Input size [n]

800

1000

Correctness

Invariant
(A condition that is always true in a specific point in an algorithm]

- Loop invariant \

@ A condition that is always true at the beginning of a loop
iteration

e what is exactly the beginning of a loop iteration?

Class invariant
@ A condition always true when the execution of a class method
is completed

Correctness

The loop invariant helps us proving that the algorithm is correct:
By induction...

Initialization (base case):
Prove that the condition is true before the first iteration

Conservation (inductive step):
If the condition is true before the iteration of the loop, then prove that it
remains true at the end (before the next iteration)

Conclusion:
At the end, the invariant must represent the "correctness" of the algorithm

Correctness of min

Invariant: At the beginning of iteration i of the while loop, min_so_far contains the partial
minimum of the elements in S[0:i].

def my faster min(S):

min so far = S[0] #first element Base cgse:
o min_so_far = S[0] IS the
while i < len(S): minimum of elements in S[0:1]

if S[i] < min so far:
min so far = S[i]
i=i+l

: Induction step:
return min so far

(assuming min_so_far is the

A=[7, -1, 9,121, -3, 4, 13] minimum of S[0:i]) at each
= s R iteration i, min_so_far is
print(A) updated IFF SJ[i] < min_so_far

print("min: {}".format(my min(A)))

17, -1,°9, 121, -3, 4, 13] min_so_far always contains
min: -3 :> e

min of elements S[0:i]

Correctness of lookup

Exercise: prove the correctness of lookup rec

def lookup rec(L, v, start,end):
if end < start:
return -1
else: i i H 2
m = (start + end)//2 What is the invariant?
if L[m] == v: #found!
return m
elif v < L[m]: #look to the left
return lookup rec(L, v, start, m-1)
else: #look to the right
return lookup rec(L, v, m+l, end)

my list = [1, 3, 5, 11, 17, 121, 443]
print(my list)
print("{} in pos: {}".format(17,
lookup rec(my list, 17, 0, len(my list)-1)))
print(“{} in pos: {}".format(4,
lookup rec(my list, 4, 0, len(my list)-1)))

print("{} in pos: {}".format(443,
lookup rec(my list, 443, 0, len(my list)-1)))

[1;: 3, 5; 11; 17,:121;. 443]
17 in pos: 4
4 in pos: -1
443 in pos: 6

Correctness of lookup

Exercise: prove the correctness of lookup rec

def lookup rec(L, v, start,end):
if end < start:
return -1
else: H H H 2
it e What is the invariant?
if L[m] == v: #found!

return m .. oy - .
elif v < L[m]: #look to the left If visin L, it is located in
return lookup rec(L, v, start, m-1) .
else: #look to the right L[Start'end+1]

return lookup rec(L, v, m+l, end)

my list = [1, 3, 5, 11, 17, 121, 443]
print(my list)
print("{} in pos: {}".format(17,
lookup rec(my list, 17, 0, len(my list)-1)))
print("{} in pos: {}".format(4,
lookup rec(my list, 4, 0, len(my list)-1)))

print("{} in pos: {}".format(443,
lookup rec(my list, 443, 0, len(my list)-1)))

[1;: 3, 5; 11; 17,:121;. 443]
17 in pos: 4
4 in pos: -1
443 in pos: 6

def lookup rec(L, v, start,end):

Correctness of lookup if end < start:

return -1
else:
.. m = (start + end)//2
Exercise: prove the correctness of lookup_rec. if L[m] == v: #found!

By induction on n = end - start return m
elif v < L[m]: #look to the left
return lookup rec(L, v, start, m-1)
Base case (n = 0) else: #look to the right
return lookup rec(L, v, m+1l, end)

Inductive hypothesis: given a size n, let us assume that the algorithm is correct
for all sizesn’<n

Inductive step: given inductive hypothesis, prove invariant still holds for size n.

def lookup rec(L, v, start,end):

Correctness of lookup if end < start:

return -1
else:
. m = (start + end)//2
Exgrmse: prove the correctness of lookup_rec. % Lin] =s v: Found!
By induction on n = end - start return m

elif v < L[m]: #look to the left
return lookup rec(L, v, start, m-1)
else: #look to the right

Base case (n = 0): if n == 0, this means that end < start.
return lookup rec(L, v, m+1l, end)

The algorithm returns =1. Correct given that if n == 0, v is not present.

Inductive hypothesis: given a size n, let us assume that the algorithm is correct
for all sizesn’<n

Inductive step: given a size n > 0, let m be the median element.

If L[m]==v, then the algorithm returns m, because m is the actual position of v —>
hence v is in m = start+end//2 that is in L[start:end]

If v < L[m], then if v is present, since S is sorted, it must be located in L[start:m].
By inductive hypothesis, lookup_rec(L, v,start, m-1) will return the correct position
of v if present, or -1 if not present (since m-1 - start is smaller than n).

if v> L[m] is symmetric.

