Scientific Programming:
Part B

Lecture 2

Luca Bianco - Academic Year 2019-20
luca.bianco@fmach.it
[credits: thanks to Prof. Alberto Montresor]

Introduction

— Goal: estimate the complexity in time of algorithms

@ Definitions
e Computing models

e Evaluation examples

e Notation

- Why?)
e To estimate the time needed to process a given input

@ To estimate the largest input computable in a reasonable time

e To compare the efficiency of different algorithms

e To optimize the most important part

Complexity

The complexity of an algorithm can be defined as a function
mapping the size of the input to the time required to get the result.

We need to define:

1. How to measure the size of the input X instructions

for getting
y from x

L/

2. How to measure time

How to measure the size of inputs

Uniform cost model

@ The wnput size is equal to the number of elements composing it

e Example: minimum search in a list of n elements

In some cases (e.g. factorial of a number) we need to consider how many
bits we use to represent inputs

Logarithmic cost model

e The input size is equal to the number of bits representing it

e Example: binary number multiplication of numbers of n bits

In several cases...

@ We can assume that the elements are represented by a
constant number of bits

@ The two measures are the same, apart from a constant
multiplication factor

Measuring time is trickier...

Time = wall-clock time

The actual time used to complete an algorithm

It depends on too many parameters:
@ how good is the programmer
@ programming language
e code generated by the compiler/interpreter
e CPU, memory, hard-disk, etc.

@ operating system, other processes currently running, etc.

Random Access Model (RAM): time

Let’s count the number of basic operations

What are basic operations?

Time = number of basic instructions

An instruction is considered basic if it can be executed in constant
time by the processor

Basic
@ a = a*x2 ? Yes (unless numbers have arbitrary precision)

@ math.cos(d) ? Yes

@ min(A) ? No (modern GPUs are highly parallel and can be constant)

Example: minimum

Let’s count the number of basic operations for min.

e [Each statement requires a constant time to be executed (even len???)
e This constant may be different for each statement
e [Each statement is executed a given number of times, function of n (size of input).

def my_faster_min(S):
min_so_far = S[0] #first element
i=1
while i < len(S):
if S[i] < min_so_far:
min_so_far = SJi]
i=i+1
return min_so_far

Example: minimum

Let’s count the number of basic operations for min.

e [Each statement requires a constant time to be executed (even len???)

e This constant may be different for each statement

e [Each statement is executed a given number of times, function of n (size of input).

Cost

def my_faster_min(S):
min_so_far = S[0] #first element c1

i=1 c2
while i < len(S): c3
if S[i] < min_so_far: c4
min_so_far = SJi] co
i=i+1 c6
return min_so_far c/

T(n) =c1+c2 +c3*n + c4*(n-1) + c56*(n-1)+c6*(n-1)+c7

Number of times

-1
-1 (worst case)
-1

= 35 353 3 35 ==

= (c3+c4+c5+c6)*n + (c1+c2-c4-c5-c6+c7) =a*n + b

Example: lookup

Let’s count the number of basic operations for lookup.

e The listis split in two parts: left size L(n-1)/2] right size Ln/2]

def lookup_rec(L, v, start,end):
if end < start:
return -1
else:
m = (start + end)//2
if L[m] == v: #found!
return m
elif v < L[m]: #look to the left
return lookup_rec(L, v, start, m-1)
else: #look to the right
return lookup_rec(L, v, m+1, end)

Example: lookup

Let’s count the number of basic operations for lookup.

e The listis split in two parts: left size L(n-1)/2] right size Ln/2]

def lookup_rec(L, v, start,end):
if end < start:
return -1
else:
m = (start + end)//2
if L[m] == v: #found!
return m
elif v < L[m]: #look to the left
return lookup_rec(L, v, start, m-1)
else: #look to the right
return lookup_rec(L, v, m+1, end)

Cost

ci
c2

c3
c4
c5
c6
c7 + T(L(n-1)/21])

c7+ T(Ln/2J)

Note: lookup_rec is not a basic operation!!!

Executed?
end < start

1
1

O OO oo

o

end = start

1
0

1

1

0 (worst case)
1

0/1

1/0

Lookup: recurrence relation

Assumptions:
e For simplicity, n is a power of 2: n = 2"k
e The searched element is not present (worst case)
e At each call, we select the right part whose size is n/2 (instead of (n-1)/2)

if start > end (n=0):
T(I'I) = () + ¢ =¢

if start < end (n>0):

Tn)=Tn/2)+c¢;+c3+es+cg+c3=Tn2)+d

Recurrence relation:

Lookup: recurrence relation T(n):{c n=0

T(n/2)+d n>1
Solution

Remember that: n=2* = k = log,n

T(n)=T(n/2)+d
= (T(n/4) + d) + d = T(n/4) + 2d
= (T'(n/8) +d)+2d=T(n/8) + 3d

.=”T(1) + kd
=T(0)+(k+1)d
=kd+ (c+d)

= dlogn +e.

» as seen before, the complexity is logarithmic
Note: in computer science log is log2.

Asymptotic notation

Complexity functions = “big-Oh” notation (omicron)

So far...
o Lookup: T(n)=d-logn+e logarithmic O(log n)
e Minimum: T(n)=a-n+>b linear O(n)
e Naive Minimum: T(n)=f-n> +g-n+h quadratic O(n"2)

we ignore the “less impacting” parts (like constants or n in
naive, ...) and focus on the predominant ones

Complexity classes

Asymptotic notation

f(n) |n=10' | n=10° | n=10° | n=10% Type
logn 3 6 9 13 logarithmic
vn 3 10 31 100 sublinear
n 10 100 1000 10000 linear
nlogn 30 664 9965 132877 log-linear
n? 102 104 10° 10° quadratic
n? 10° 15 1 15 cubic

2% 1024 10°% 9o 10°°% | exponential

Note: these are “trends” (we hide all constants that might have an impact for small
inputs). For small inputs exponential algorithms might still be acceptable (especially

if nothing better exists!)

Asymptotic notation

linear

logarithmic

[Miller, Ranum, Problem solving with Algorithms and Data structures]

0O,0,© notations

-~ Definition — O notation

Let g(n) be a cost function; O(g(n)) is the set of all functions f(n)
such that:

dc>0,Am > 0: f(n) < cg(n),Yyn > m

o How we read it: f(n) is “big-Oh” of g(n)
e How we write it: f(n) = O(g(n))

@ g(n) is asymptotic upper bound for f(n) -
e f(n) grows at most as g(n)

0O,0,0 notations

- Definition — 2 notation

Let g(n) be a cost function; 2(g(n)) is the set of all functions f(n)
such that:

dc>0,d3m >0: f(n) > cg(n),Vn > m

o How we read it: f(n) is “big-omega” of g(n)
e How we write it: f(n) = Q(g(n))

e g(n) is an asymptotic lower bound for f(n) -
o f(n) grows at least as g(n)

0O,0,0 notations

-~ Definition — Notation © \
Let g(n) be a cost function; ©(g(n)) is the set of all functions f(n)
such that:

dc1 > 0,3c2 > 0,d3m >0:c19(n) < f(n) < c2g(n),Vn > m

e How we read it: f(n) is “theta” of g(n)
o How we write it: f(n) = ©(g(n))

o f(n) grows as g(n)

o f(n) =0(g(n)) if f(n) = O(g(n)) and f(n) = Ag(n)) {mm

0O,0,0 notations

200 T T T T 7
ng(n) --------- (upper bound, O) /,o'
f(n)
c1g(n) ----------- (lower bound, Q) ',"'
150 | 1

100

50

-
-
-
-
-
-
-
Ad
fo

- B
- .
- .

- avs®

-
- .
- ..

N S ST
- cthd

0O,0],0 notations

200

150

100

50

R (upper bound, O) X
f(n

| En; | bound, Q) More relevant,

........... ower bound, . 5

| (inputs tend to grow
| "
Less relevant,
small input
|

............ ?..... rT]

___,,,,.u
.
pad®
we*
e

10

Exercise: True or False?
f(n) =108 +2n* +7 = O(®)

We need to prove that (i.e. find a ¢ and m such that):

3¢>0.3m>0: fn)<c-n.Nn>m

f(n) =100 +2n% 4+ 7

<10n° +2n° + 7 Vn >0
< 10n3 + 2n3 + Tn? Vn > 1
= 19n°

?

< en®

which is true for each ¢ > 19 and for each n > 1, thus m = 1.

f(n) =101 + 21> +7
In graphical terms

2500 T T T T
1 0n3+2n3+7n3 -----------
10n342n347 -

2000 | 10n3+2n2+7 i
1500 3
1000

500 |

0

Exercise: True or False?
fn) = 3n + Tn = O(n?)

We need to prove that (i.e. find a ¢ and m such that):

d¢; > 0,3my > 0: f(n) > ¢, - n*,Vn > m lower bound (Q)

and that

d¢; > 0,3my, 20: f(n) < ¢, - n*.¥n > m» upper bound (O)

Exercise: True or False?

fn) = 3n + Tn = O(n?)

We need to prove that (i.e. find a ¢ and m such that):

de;, > 0,3m >0: f(n) > ¢ - n>.¥n>m; lower bound (Q)

f(n) =3n2 +7n
> 3n? n >0

4?

> cln2

which is true for each ¢; < 3 and for each n > 0, thus m; =0 - f(n) = Q(n"2)

Exercise: True or False?

fn) = 3n + Tn = O(n?)

We need to prove that (i.e. find a ¢ and m such that):

de; > 0,3m, 20: f(n) <, - n.¥n > m, upper bound (O)

f(n) =3n’+Tn
< 3n? + Tn? n>1
= 10n?

2

S Czn2

- A
which is true foreach ¢; > 10 andforalln > 1, hence my; = 1. ‘ fin) = O(n"2)

‘ f(n) =3n> +Tn = O(n?)

In graphical terms: 3n"*2+7n is ©(n"2)

250

102 -=---eee
3n%+7n
2
000 L 3n? e
150

100 r

50 r

True or False?

2

n? = O(n)

We want to prove that 3¢ > 0,3m > 0:n? < cn,Vn >m
o We get this: n? <enec>n

e This means that ¢ should grow with n, i.e. we cannot choose a
constant ¢ valid for alln > m

) A # O

True or False?

5000

4000 L 40N e

3000

2000

Exercise:

1000
nw = O(n3)

we cannot find a constant C making n grow faster than n”2

Properties

Polynomial expressions

f(n) = axn® + ap_1n* 1+ ...a1n+ag,ar > 0= f(n) = O(n*)

Constant elimination

Meaning:
e We only care about the highest degree of the polynomial

e Multiplicative constants, do not change the asymptotic complexity
(e.g. constants costs due to language, technical implementation,...)

Properties

-~ Sums N

fi(n) = O(g1(n)), fa(n) = O(g2(n))
fi(n) + fa(n) = O(max(g1(n), ga(n)))

fi(n) = Qg1(n)), f2(n) = Qg2(n)) =
fi(n) + fa(n) = Qmin(g1(n), g2(n)))

=

[Relation with algorithm analysis)

o If an algorithm is composed by two parts, one which is ©(n?) and
one which ©(n), the resulting complexity is ©(n? + n) = O(n?)

We only care about the “computationally more expensive” part to
solve of the algorithm.

O(n - logn + n) = O(n - logn)

Properties

Products

fi(n) = O0(g1(n)), f2(n) = O(g2(n)) = fi(n) - f2(n) = O(g1(n) - g2(n))
fi(n) =Q(g1(n)), fa(n) = Q(g2(n)) = f1(n) - f2(n) = Q(g1(n) - g2(n))

(Relation with algorithm analysis)

e If algorithm A calls algorithm B n times, and the complexity of
algorithm B is ©(n logn), the resulting complexity is ©(n? logn).

foriin range(n):
call_to_function_that_is_n"2_log_n() } O(n?logn)

Classification

Is it possible to create a total order between the main function classes.

Foreach 0 <r <s,0<h<k,1<a<b:

O(1) c O(log" n) c O(log®*n) c O(n") c O(n"log” n)
O(n"log®* n) c O(n*) C O(a™) Cc O(b™)

Examples:
No matter the exponent, (log n)*r will

O(logn) € O(y/n) € O(+/n) always be better than n)...
0(2,,+|) - 0@2-2" = 02" Same thing for n log n vs n etc...

Complexity of maxsum: ©(n"3)

def max sum v1(A):

max_so_far =0 Intuitively:
N = }er_\(A) we perform two loops of length N
for i in range(N): one into the other » cost N2

for j in range(i,N):
tmp _sum = sum (A[i:j+1]) : . ,
max_so_far = max(tmp sum, max so far) sum is not a basic operation (cost N):

return max so far » overall cost N3

The complexity of this algorithm can be approximated as follows (we are

counting the number of sums that are executed).
n—1n=1

T(n)=)_) (G—i+1)

i=0 j=i

We want to prove that T'(n) = 6(n?), i.e.
Je1,00>0,I3Mm>0: 0 < T(n) < can®.¥n > m

Complexity of maxsum: O(n”3)

n—1n—1
T(n)=) Y (F-i+1)
1=0 j=1t
n—li—l
22,0
1=0 j=1
n—1ln—1

SR

1=0 5=0
n—1
= Z n?
1=0

< n3 < an3

This inequality is true for n > m =0 and ¢y > 1. - O(n/\3)

Complexity of maxsum: QQ(n"3)

n—1ln—1

T(n)=3 Y (G—i+1)

i=0 j=i
n/2 i+n/2—1

>). (G-i+1)
1=0

J=i
n/2 i4n/2-1

ZZO Z n/2

n/2

. Zn2/4 >n?/8 > ¢in?
i=0

This inequality is true for n > m =0 and ¢; <8 - Q(I’]A3)

= O(n"3)

Complexity of maxsum -version 2: QQ(n"2)

def max sum v2(A):
N = len(A)
max_so far = 0

for i in range(N):
tot = 0 #ACCUMULATOR!
for j in range(i,N):
tot = tot + A[j]
max_so far = max(max so far, tot)
return max _so_far

The complexity of this algorithm can be approximated as follows (we
are counting the number of sums that are executed).

n—1
T(n)= Zn — 1
i=0

Complexity of maxsum -version 2: ©(n"2)

We want to prove that T'(n) = 6(n?).

n—1
T(n)= Z n—g
1=0

n
= 1
i=1
n(n +1)

= 5 — @(nQ) Gauss

This does not require further proofs.

Complexity of maxsum -version 4: ©(n)

def max sum v4(A):
max_so _far = 0 #Max found so far
max_here = 0 #Max slice ending at cur pos

for i in range(len(A)):
max_here = max(A[i] + max here, 0)
max_so far = max(max so far, max here)
return max so far

Complexity is ©(n)

F

This is rather easy!

Constant operations (sum and
max of 2 numbers) performed
n times

Complexity of maxsum -version 3

from itertools import accumulate

def max sum v3 rec bis(A,i,j):

it i==j:
return max(0,A[1])
m= (i+j)//2
maxL = max sum v3 rec bis(A,i,m) } Recursive algorithm
maxR = max sum v3 rec bis(A, m+1l, j)) ’
recurrence relation

maxML = max(accumulate(A[m:-len(A) + i -1: -1]))
maxMR = max(accumulate(A[m+1:j+1]))
return max(maxL, maxR, maxML+ maxMR)

def max sum v3(A):
return max_sum v3 rec bis(A,0,len(A) - 1)
Bear with me a minute.

We will get back to this
later...!

Recurrences

~ Recurrence equations

Whenever the complexity of a recursive algorithm is computed,
this is expressed through recurrence equation, i.e. a mathematical

formula defined in a... recursive way!
\

Example

T(n) = 2T(n/2)+n n>1
"=l eq) n<l1

Recurrences

Closed formulas

Our goal is to obtain, whenever possible, a closed formula that
represents the complexity class of our function.

Example
T(n) = O(nlogn) l

Master Theorem

Theorem

Let a and b two integer constants such that a > 1 e b > 2, and let
¢, B be two real constants such that ¢ > 0 e 8 > 0. Let T'(n) be
defined by the following recurrence:

—
T(n) = al'(n/b) +cen” n>1
O(1) n <1

Given o = loga/logh = log a, then:

O(n%) a>p
T(n) =¢O(Mn*%logn) a=24
O (n?) a<pf

Note: the schema covers cases when input of size n is split in b sub-problems,
to get the solution the algorithm is applied recursively a times. cnP is the cost of
the algorithm after the recursive steps.

Example

S

Theorem

Let a and b two integer constants such that a > 1 e b > 2, and let
¢, B be two real constants such that ¢ > 0 e 8 > 0. Let T'(n) be

defined by the following recurrence:
T(n) = {aT(n/b) +enf n>1

o(1) n<1l
Algo: splits the input in two, applies the Given a = loga/logh = log, a, then:
procedure recursively 4 times and has a O(n®) a>p
linear cost to assemble the solution at the Tn)= {9(“ logn) a=4
end. O(nf) a<f
\ Recurrence a | b | logya | Case Function
T(n)=4T(n/2)+n 4 | 2 2 (1) T(n) = ©(n?)
T(n)=3T(n/2)+n 3]2]1logy3| (1) | T(n)=06(nl=23)
T(n)=2T(n/2)+n 2|2 1 (2) | T(n)=0O(nlogn)
T(n)=T(n/2) +1 L |2 0 (2) T(n) = O(logn)
T(n) = 9T(n/3) + n? 9|3 2 (3) T(n) = O(n3)

Note: the schema covers cases when input of size n is split in b sub-problems,
to get the solution the algorithm is applied recursively a times. cnP is the cost of
the algorithm after the recursive steps.

«—— n™M.58

maxsum - version 3

from itertools import accumulate
def max_sum v3 rec bis(A,i,j):
it i = j:
return max(0,A[1])

The algorithm splits the input in two
“equally-sized” sub-problems (m = i+j//2) and

m= (i+j)//2 applies itself recursively 2 times.

maxL = max sum v3 rec bis(A,i,m) The accumulate after the recursive part is
maxR = max_sum v3 rec bis(A, m+l, j) linear cn.

maxML = max(accumulate(A[m:-len(A) + 1 -1: -1]))

maxMR = max(accumulate(A[m+1:j+1]))
return max(maxL, maxR, maxML+ maxMR)

def max sum v3(A):
return max sum v3 rec bis(A,0,len(A) - 1)

For this, we need to define a recurrence relation:
T(n) =2T(n/2) +cn

maxsum - version 3

from itertools import accumulate

def max sum v3 rec bis(A,i,j):

if i == j:
return max(0,A[1])
m= (i+j)//2

maxL = max sum v3 rec bis(A,i,m)

maxR = max _sum v3 rec bis(A, m+l, j)

maxML = max(accumulate(A[m:-len(A) + 1 -1: -1]))
maxMR = max(accumulate(A[m+1:j+1]))

return max(maxL, maxR, maxML+ maxMR)

def max sum v3(A):
return max sum v3 rec bis(A,0,len(A) - 1)

For this, we need to define a recurrence relation:
T(n) =2T(n/2) +cn

~~ Theorem

Let a and b two integer constants such that a > 1 e b > 2, and let
¢, B be two real constants such that ¢ > 0 e 8 > 0. Let T'(n) be
defined by the following recurrence:

Tl = aT(n/b) +cen® n>1
(n) = o(1) n<1

Given a = log a/logb = logy a, then:

T(n)=40O(Mn*logn) a=4

{@(n"‘) a>f

O(nf) a< B

~

a=log,2=1and =1

‘) = Ofiiogn)

