Scientific Programming: Part B

Lecture 2

Luca Bianco - Academic Year 2019-20
luca.bianco@fmach.it
[credits: thanks to Prof. Alberto Montresor]

Introduction

Goal: estimate the complexity in time of algorithms

- Definitions
- Computing models
- Evaluation examples
- Notation

Why?

- To estimate the time needed to process a given input
- To estimate the largest input computable in a reasonable time
- To compare the efficiency of different algorithms
- To optimize the most important part

Complexity

The complexity of an algorithm can be defined as a function mapping the size of the input to the time required to get the result.

We need to define:

1. How to measure the size of the input
2. How to measure time

How to measure the size of inputs

Uniform cost model

- The input size is equal to the number of elements composing it
- Example: minimum search in a list of n elements

In some cases (e.g. factorial of a number) we need to consider how many bits we use to represent inputs

Logarithmic cost model

- The input size is equal to the number of bits representing it
- Example: binary number multiplication of numbers of n bits

In several cases...

- We can assume that the elements are represented by a constant number of bits
- The two measures are the same, apart from a constant multiplication factor

Measuring time is trickier...

Time \equiv wall-clock time

The actual time used to complete an algorithm
It depends on too many parameters:

- how good is the programmer
- programming language
- code generated by the compiler/interpreter
- CPU, memory, hard-disk, etc.
- operating system, other processes currently running, etc.

We need a more abstract representation of time

Random Access Model (RAM): time

Let's count the number of basic operations

What are basic operations?

Time \equiv number of basic instructions

An instruction is considered basic if it can be executed in constant time by the processor

Basic

- $\mathrm{a}=\mathrm{a} * 2$? Yes (unless numbers have arbitrary precision)
- math.cos(d) ? Yes
- min(A) ? No (modern GPUs are highly parallel and can be constant)

Example: minimum

Let's count the number of basic operations for min.

- Each statement requires a constant time to be executed (even len???)
- This constant may be different for each statement
- Each statement is executed a given number of times, function of n (size of input).

```
def my_faster_min(S):
    min_so_far = S[0] #first element
    i=1
    while i < len(S):
        if S[i] < min_so_far:
            min_so_far = S[i]
        i= i +1
    return min_so_far
```


Example: minimum

Let's count the number of basic operations for min.

- Each statement requires a constant time to be executed (even len???)
- This constant may be different for each statement
- Each statement is executed a given number of times, function of n (size of input).

Cost Number of times

def my_faster_min(S):
min_so_far = S[0] \#first element c1
i = 1
while $\mathrm{i}<\operatorname{len}(\mathrm{S})$:
if S[i] < min_so_far: min_so_far $=$ S[i]
$\mathrm{i}=\mathrm{i}+1$
return min_so_far
c2 c3
c4
c5
c6
c7

1
1
n
$\mathrm{n}-1$
$\mathrm{n}-1$ (worst case)
n-1
1

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =c 1+\mathrm{c} 2+\mathrm{c} 3^{*} \mathrm{n}+\mathrm{c} 4^{*}(\mathrm{n}-1)+\mathrm{c} 5^{*}(\mathrm{n}-1)+\mathrm{c} 6^{*}(\mathrm{n}-1)+\mathrm{c} 7 \\
& =(\mathrm{c} 3+\mathrm{c} 4+\mathrm{c} 5+\mathrm{c} 6)^{*} \mathrm{n}+(\mathrm{c} 1+\mathrm{c} 2-\mathrm{c} 4-\mathrm{c} 5-\mathrm{c} 6+\mathrm{c} 7)=\mathbf{a}^{*} \mathrm{n}+\mathrm{b}
\end{aligned}
$$

Example: lookup

Let's count the number of basic operations for lookup.

- The list is split in two parts: left size $L(n-1) / 2\rfloor$ right size $\operatorname{Ln} / 2\rfloor$

```
def lookup_rec(L, v, start,end):
    if end < start:
        return -1
    else:
        m = (start + end)//2
        if L[m] == v: #found!
            return m
        elif v < L[m]: #look to the left
            return lookup_rec(L, v, start, m-1)
        else: #look to the right
            return lookup_rec(L, v, m+1, end)
```


Example: lookup

Let's count the number of basic operations for lookup.

- The list is split in two parts: left size $L(n-1) / 2\rfloor$ right size $L n / 2\rfloor$

Cost

```
def lookup_rec(L, v, start,end):
    if end < start:
        return -1
    else:
        m = (start + end)//2 c3
        if L[m] == v: #found! c4
            return m c5
        elif v < L[m]: #look to the left
            return lookup_rec(L, v, start, m-1) c7 + T(L(n-1)/2」)
        else: #look to the right
            return lookup_rec(L, v, m+1, end) c7+T(Ln/2J)c1c2
            c6
```

 Executed?
 \(\begin{array}{cc}\text { end }<\text { start } & \text { end } \geq \text { start } \\ 1 & 1 \\ 1 & 0\end{array}\)
 0
 0
 0
 0
 0
 0
 \(1 / 0\)
 Note: lookup_rec is not a basic operation!!!

Lookup: recurrence relation

Assumptions:

- For simplicity, n is a power of $2: \mathrm{n}=2^{\wedge} \mathrm{k}$
- The searched element is not present (worst case)
- At each call, we select the right part whose size is $n / 2$ (instead of (n-1)/2)
if start > end ($\mathrm{n}=0$):

$$
T(n)=c_{1}+c_{2}=c
$$

if start \leqslant end $(n>0)$:

$$
T(n)=T(n / 2)+c_{1}+c_{3}+c_{4}+c_{6}+c_{7}=T(n / 2)+d
$$

Recurrence relation:

$$
T(n)= \begin{cases}c & n=0 \\ T(n / 2)+d & n \geq 1\end{cases}
$$

Lookup: recurrence relation

$$
T(n)= \begin{cases}c & n=0 \\ T(n / 2)+d & n \geq 1\end{cases}
$$

Solution
Remember that: $\quad n=2^{k} \Rightarrow k=\log _{2} n$

$$
\begin{aligned}
T(n) & =T(n / 2)+d \\
& =(T(n / 4)+d)+d=T(n / 4)+2 d \\
& =(T(n / 8)+d)+2 d=T(n / 8)+3 d \\
& \cdots \\
& =T(1)+k d \\
& =T(0)+(k+1) d \\
& =k d+(c+d) \\
& =d \log n+e .
\end{aligned}
$$

Asymptotic notation

Complexity functions \rightarrow "big-Oh" notation (omicron)

So far...

- Lookup: $T(n)=d \cdot \log n+e$
- Minimum: $\quad T(n)=a \cdot n+b$
- Naive Minimum: $T(n)=f \cdot n^{2}+g \cdot n+h$
logarithmic
linear
quadratic

we ignore the "less impacting" parts (like constants or n in naive, ...) and focus on the predominant ones

Asymptotic notation

Complexity classes

$f(n)$	$n=10^{1}$	$n=10^{2}$	$n=10^{3}$	$n=10^{4}$	Type
$\log n$	3	6	9	13	logarithmic
\sqrt{n}	3	10	31	100	sublinear
n	10	100	1000	10000	linear
$n \log n$	30	664	9965	132877	log-linear
n^{2}	10^{2}	10^{4}	10^{6}	10^{8}	quadratic
n^{3}	10^{3}	10^{6}	10^{9}	10^{12}	cubic
2^{n}	1024	10^{30}	10^{300}	10^{3000}	exponential

Note: these are "trends" (we hide all constants that might have an impact for small inputs). For small inputs exponential algorithms might still be acceptable (especially if nothing better exists!)

Asymptotic notation

[Miller, Ranum, Problem solving with Algorithms and Data structures]

\bigcirc, Ω, Θ notations

Definition - O notation

Let $g(n)$ be a cost function; $O(g(n))$ is the set of all functions $f(n)$ such that:

$$
\exists c>0, \exists m \geq 0: f(n) \leq c g(n), \forall n \geq m
$$

- How we read it: $f(n)$ is "big-Oh" of $g(n)$
- How we write it: $f(n)=O(g(n))$
- $g(n)$ is asymptotic upper bound for $f(n)$
- $f(n)$ grows at most as $g(n)$

$\mathrm{O}, \Omega, \Theta$ notations

Definition - Ω notation

Let $g(n)$ be a cost function; $\Omega(g(n))$ is the set of all functions $f(n)$ such that:

$$
\exists c>0, \exists m \geq 0: f(n) \geq c g(n), \forall n \geq m
$$

- How we read it: $f(n)$ is "big-omega" of $g(n)$
- How we write it: $f(n)=\Omega(g(n))$
- $g(n)$ is an asymptotic lower bound for $f(n)$
- $f(n)$ grows at least as $g(n)$

\bigcirc, Ω, Θ notations

Definition - Notation Θ

Let $g(n)$ be a cost function; $\Theta(g(n))$ is the set of all functions $f(n)$ such that:

$$
\exists c_{1}>0, \exists c_{2}>0, \exists m \geq 0: c_{1} g(n) \leq f(n) \leq c_{2} g(n), \forall n \geq m
$$

- How we read it: $f(n)$ is "theta" of $g(n)$
- How we write it: $f(n)=\Theta(g(n))$
- $f(n)$ grows as $g(n)$
- $f(n)=\Theta(g(n))$ iff $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$

\bigcirc, Ω, Θ notations

$\mathrm{O}, \Omega, \Theta$ notations

Exercise: True or False?

$$
f(n)=10 n^{3}+2 n^{2}+7 \stackrel{?}{=} O\left(n^{3}\right)
$$

We need to prove that (i.e. find a c and m such that):

$$
\begin{array}{rlrl}
& \exists c>0, \exists m \geq 0: f(n) \leq c \cdot n^{3}, \forall n \geq m & \\
& & \\
f(n) & =10 n^{3}+2 n^{2}+7 & \\
& \leq 10 n^{3}+2 n^{3}+7 & & \\
& \leq 10 n^{3}+2 n^{3}+7 n^{3} & \forall n \geq 0 \\
& =19 n^{3} & \\
& ? c n^{3} &
\end{array}
$$

which is true for each $c \geq 19$ and for each $n \geq 1$, thus $m=1$.

In graphical terms

$$
f(n)=10 n^{3}+2 n^{2}+7
$$

Exercise: True or False?

$$
f(n)=3 n^{2}+7 n \stackrel{?}{=} \Theta\left(n^{2}\right)
$$

We need to prove that (i.e. find ac and m such that):

$$
\exists c_{1}>0, \exists m_{1} \geq 0: f(n) \geq c_{1} \cdot n^{2}, \forall n \geq m_{1} \quad \text { lower bound (} \Omega \text {) }
$$

and that

$$
\exists c_{2}>0, \exists m_{2} \geq 0: f(n) \leq c_{2} \cdot n^{2}, \forall n \geq m_{2} \quad \text { upper bound (O) }
$$

Exercise: True or False?

$$
f(n)=3 n^{2}+7 n \stackrel{?}{=} \Theta\left(n^{2}\right)
$$

We need to prove that (i.e. find a c and m such that):

$$
\begin{array}{rlrl}
\exists c_{1} & >0, \exists m_{1} \geq 0: f(n) \geq c_{1} \cdot n^{2}, \forall n \geq m_{1} & & \text { lower bound (} \Omega \text {) } \\
& & \\
f(n) & =3 n^{2}+7 n & & \\
& \geq 3 n^{2} & & n \geq 0 \\
& ? &
\end{array}
$$

which is true for each $c_{1} \leq 3$ and for each $n \geq 0$, thus $m_{1}=0$

Exercise: True or False?

$$
f(n)=3 n^{2}+7 n \stackrel{?}{=} \Theta\left(n^{2}\right)
$$

We need to prove that (i.e. find a c and m such that):

$$
\begin{array}{rlr}
\exists c_{2}> & 0, \exists m_{2} \geq 0: f(n) \leq c_{2} \cdot n^{2}, \forall n \geq m_{2} \quad \text { upper bound (O) } \\
& \\
f(n) & =3 n^{2}+7 n & \\
& \leq 3 n^{2}+7 n^{2} & \\
& =10 n^{2} & \\
& \stackrel{?}{\leq} c_{2} n^{2} &
\end{array}
$$

which is true for each $c_{2} \geq 10$ and for all $n \geq 1$, hence $m_{2}=1$.

$$
f(n)=O\left(n^{\wedge} 2\right)
$$

$$
f(n)=3 n^{2}+7 n=\Theta\left(n^{2}\right)
$$

In graphical terms: $3 n^{\wedge} 2+7 n$ is $\Theta\left(n^{\wedge} 2\right)$

True or False?

$$
n^{2} \stackrel{?}{=} O(n)
$$

We want to prove that $\exists c>0, \exists m>0: n^{2} \leq c n, \forall n \geq m$

- We get this: $n^{2} \leq c n \Leftrightarrow c \geq n$
- This means that c should grow with n, i.e. we cannot choose a constant c valid for all $n \geq m$

$$
n^{2} \neq O(n)
$$

True or False?

$$
n^{2} \neq O(n)
$$

Properties

Polynomial expressions

$$
f(n)=a_{k} n^{k}+a_{k-1} n^{k-1}+\ldots a_{1} n+a_{0}, a_{k}>0 \Rightarrow f(n)=\Theta\left(n^{k}\right)
$$

Constant elimination

$$
\begin{aligned}
& f(n)=O(g(n)) \Leftrightarrow a f(n)=O(g(n)), \forall a>0 \\
& f(n)=\Omega(g(n)) \Leftrightarrow a f(n)=\Omega(g(n)), \forall a>0
\end{aligned}
$$

Meaning:

- We only care about the highest degree of the polynomial
- Multiplicative constants, do not change the asymptotic complexity (e.g. constants costs due to language, technical implementation,...)

Properties

Sums

$$
\begin{gathered}
f_{1}(n)=O\left(g_{1}(n)\right), f_{2}(n)=O\left(g_{2}(n)\right) \Rightarrow \\
f_{1}(n)+f_{2}(n)=O\left(\max \left(g_{1}(n), g_{2}(n)\right)\right) \\
f_{1}(n)=\Omega\left(g_{1}(n)\right), f_{2}(n)=\Omega\left(g_{2}(n)\right) \Rightarrow \\
f_{1}(n)+f_{2}(n)=\Omega\left(\min \left(g_{1}(n), g_{2}(n)\right)\right)
\end{gathered}
$$

Relation with algorithm analysis

- If an algorithm is composed by two parts, one which is $\Theta\left(n^{2}\right)$ and one which $\Theta(n)$, the resulting complexity is $\Theta\left(n^{2}+n\right)=\Theta\left(n^{2}\right)$

We only care about the "computationally more expensive" part to solve of the algorithm.
$O(n \cdot \log n+n)=O(n \cdot \log n)$

Properties

Products

$$
\begin{aligned}
& f_{1}(n)=O\left(g_{1}(n)\right), f_{2}(n)=O\left(g_{2}(n)\right) \Rightarrow f_{1}(n) \cdot f_{2}(n)=O\left(g_{1}(n) \cdot g_{2}(n)\right) \\
& f_{1}(n)=\Omega\left(g_{1}(n)\right), f_{2}(n)=\Omega\left(g_{2}(n)\right) \Rightarrow f_{1}(n) \cdot f_{2}(n)=\Omega\left(g_{1}(n) \cdot g_{2}(n)\right)
\end{aligned}
$$

Relation with algorithm analysis

- If algorithm A calls algorithm $B n$ times, and the complexity of algorithm B is $\Theta(n \log n)$, the resulting complexity is $\Theta\left(n^{2} \log n\right)$.
for i in range(n):
call_to_function_that_is_n^2_log_n()

Classification

Is it possible to create a total order between the main function classes.
For each $0<r<s, 0<h<k, 1<a<b$:

$$
\begin{aligned}
& O(1) \subset O\left(\log ^{r} n\right) \subset O\left(\log ^{s} n\right) \subset O\left(n^{h}\right) \subset O\left(n^{h} \log ^{r} n\right) \subset \\
& O\left(n^{h} \log ^{s} n\right) \subset O\left(n^{k}\right) \subset O\left(a^{n}\right) \subset O\left(b^{n}\right)
\end{aligned}
$$

Examples:

$$
\begin{aligned}
& O(\log n) \subset O(\sqrt[3]{n}) \subset O(\sqrt{n}) \\
& O\left(2^{n+1}\right)=O\left(2 \cdot 2^{n}\right)=O\left(2^{n}\right)
\end{aligned}
$$

No matter the exponent, $(\log n)^{\wedge} r$ will always be better than \mathbf{n})...
Same thing for $\mathbf{n} \log \mathbf{n}$ vs \mathbf{n} etc...

Complexity of maxsum: $\Theta\left(\mathrm{n}^{\wedge} 3\right)$

```
def max_sum_v1(A):
    max so \overline{far = 0}
    N = - len (A)
    for i in range(N):
        for j in range(i,N):
            tmp_sum = sum (A[i:j+1])
            max_so_far = max(tmp_sum, max_so_far)
```

 Intuitively:
 we perform two loops of length N
 one into the other \(\rightarrow \operatorname{cost} \mathrm{N}^{\wedge} 2\)
 sum is not a basic operation (cost N):
 return max_so_far
 overall cost \(\mathrm{N}^{\wedge} 3\)
 The complexity of this algorithm can be approximated as follows (we are counting the number of sums that are executed).

$$
T(n)=\sum_{i=0}^{n-1} \sum_{j=i}^{n-1}(j-i+1)
$$

We want to prove that $T(n)=\theta\left(n^{3}\right)$, i.e.

$$
\exists c_{1}, c_{2}>0, \exists m \geq 0: c_{1} n^{3} \leq T(n) \leq c_{2} n^{3}, \forall n \geq m
$$

Complexity of maxsum: $O\left(\mathrm{n}^{\wedge} 3\right)$

$$
\begin{aligned}
T(n) & =\sum_{i=0}^{n-1} \sum_{j=i}^{n-1}(j-i+1) \\
& \leq \sum_{i=0}^{n-1} \sum_{j=i}^{n-1} n \\
& \leq \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} n \\
& =\sum_{i=0}^{n-1} n^{2} \\
& \leq n^{3} \leq c_{2} n^{3}
\end{aligned}
$$

This inequality is true for $n \geq m=0$ and $c_{2} \geq 1$.
$\mathrm{O}\left(\mathrm{n}^{\wedge} 3\right)$

Complexity of maxsum: $\Omega\left(\mathrm{n}^{\wedge} 3\right)$

$$
\begin{aligned}
T(n) & =\sum_{i=0}^{n-1} \sum_{j=i}^{n-1}(j-i+1) \\
& \geq \sum_{i=0}^{n / 2} \sum_{j=i}^{i+n / 2-1}(j-i+1) \\
& \geq \sum_{i=0}^{n / 2} \sum_{j=i}^{i+n / 2-1} n / 2 \\
& =\sum_{i=0}^{n / 2} n^{2} / 4 \geq n^{3} / 8 \geq c_{1} n^{3}
\end{aligned}
$$

This inequality is true for $n \geq m=0$ and $c_{1} \leq 1 / 8$

$\Omega\left(n^{\wedge} 3\right)$

Complexity of maxsum -version $2: \Omega\left(\mathrm{n}^{\wedge} 2\right)$

```
def max_sum_v2(A):
    N = len(A)
    max_so_far = 0
    for i in range(N):
        tot = 0 #ACCUMULATOR!
        for j in range(i,N):
            tot = tot + A[j]
            max_so_far = max(max_so_far, tot)
    return max_so_far
```

The complexity of this algorithm can be approximated as follows (we are counting the number of sums that are executed).

$$
T(n)=\sum_{i=0}^{n-1} n-i
$$

Complexity of maxsum -version $2: \Theta\left(n^{\wedge} 2\right)$

We want to prove that $T(n)=\theta\left(n^{2}\right)$.

$$
\begin{aligned}
T(n) & =\sum_{i=0}^{n-1} n-i \\
& =\sum_{i=1}^{n} i \\
& =\frac{n(n+1)}{2}=\Theta\left(n^{2}\right)
\end{aligned}
$$

This does not require further proofs.

Complexity of maxsum -version 4: $\Theta(\mathrm{n})$

```
def max_sum_v4(A):
    max_so far = 0 #Max found so far
    max_here = 0 #Max slice ending at cur pos
    for i in range(len(A)):
        max_here = max(A[i] + max_here, 0)
        max_so_far = max(max_so_fār, max_here)
    return max_so_far
```


This is rather easy!
Constant operations (sum and max of 2 numbers) performed n times

Complexity is $\Theta(\mathrm{n})$

Complexity of maxsum -version 3

```
from itertools import accumulate
def max_sum_v3_rec_bis(A,i,j):
    if i == j:
            return max(0,A[i])
    m=(i+j)//2
    maxL = max_sum_v3_rec_bis(A,i,m)
    maxR = max_sum_v3_rec_bis(A, m+1, j)
    maxML = max (accumulatē (A[m:-len (A) + i -1: -1]))
    maxMR = max(accumulate (A[m+1:j+1]))
    return max(maxL, maxR, maxML+ maxMR)
def max_sum_v3(A):
    retürn max_sum_v3_rec_bis(A,0,len(A) - 1)
```

Recursive algorithm, recurrence relation

Bear with me a minute. We will get back to this later...!

Recurrences

Recurrence equations

Whenever the complexity of a recursive algorithm is computed, this is expressed through recurrence equation, i.e. a mathematical formula defined in a... recursive way!

Example

$$
T(n)= \begin{cases}2 T(n / 2)+n & n>1 \\ \Theta(1) & n \leq 1\end{cases}
$$

Recurrences

Closed formulas

Our goal is to obtain, whenever possible, a closed formula that represents the complexity class of our function.

$$
\begin{aligned}
& \text { Example } \\
& \qquad T(n)=\Theta(n \log n)
\end{aligned}
$$

Master Theorem

Theorem

Let a and b two integer constants such that $a \geq 1$ e $b \geq 2$, and let c, β be two real constants such that $c>0$ e $\beta \geq 0$. Let $T(n)$ be defined by the following recurrence:

$$
T(n)= \begin{cases}a T(n / b)+c n^{\beta} & n>1 \\ \Theta(1) & n \leq 1\end{cases}
$$

Given $\alpha=\log a / \log b=\log _{b} a$, then:

$$
T(n)= \begin{cases}\Theta\left(n^{\alpha}\right) & \alpha>\beta \\ \Theta\left(n^{\alpha} \log n\right) & \alpha=\beta \\ \Theta\left(n^{\beta}\right) & \alpha<\beta\end{cases}
$$

Note: the schema covers cases when input of size \mathbf{n} is split in \mathbf{b} sub-problems, to get the solution the algorithm is applied recursively a times. $\mathbf{c n}^{\boldsymbol{\beta}}$ is the cost of the algorithm after the recursive steps.

Examples

Algo: splits the input in two, applies the procedure recursively 4 times and has a linear cost to assemble the solution at the end.

Theorem

Let a and b two integer constants such that $a \geq 1$ e $b \geq 2$, and let c, β be two real constants such that $c>0$ e $\beta \geq 0$. Let $T(n)$ be defined by the following recurrence:

$$
T(n)= \begin{cases}a T(n / b)+c n^{\beta} & n>1 \\ \Theta(1) & n \leq 1\end{cases}
$$

Given $\alpha=\log a / \log b=\log _{b} a$, then:

$$
T(n)= \begin{cases}\Theta\left(n^{\alpha}\right) & \alpha>\beta \\ \Theta\left(n^{\alpha} \log n\right) & \alpha=\beta \\ \Theta\left(n^{\beta}\right) & \alpha<\beta\end{cases}
$$

Recurrence	\mathbf{a}	\mathbf{b}	$\log _{\mathbf{b}} \mathbf{a}$	Case	Function
$T(n)=4 T(n / 2)+n$	4	2	2	(1)	$T(n)=\Theta\left(n^{2}\right)$
$T(n)=3 T(n / 2)+n$	3	2	$\log _{2} 3$	(1)	$T(n)=\Theta\left(n^{\log _{2} 3}\right)$
$T(n)=2 T(n / 2)+n$	2	2	1	(2)	$T(n)=\Theta(n \log n)$
$T(n)=T(n / 2)+1$	1	2	0	(2)	$T(n)=\Theta(\log n)$
$T(n)=9 T(n / 3)+n^{3}$	9	3	2	(3)	$T(n)=\Theta\left(n^{3}\right)$

Note: the schema covers cases when input of size \mathbf{n} is split in \mathbf{b} sub-problems, to get the solution the algorithm is applied recursively a times. $\mathbf{c n}^{\boldsymbol{\beta}}$ is the cost of the algorithm after the recursive steps.

maxsum - version 3

```
from itertools import accumulate
def max_sum_v3_rec_bis(A,i,j):
    if \overline{i}==-}\mathbf{j}
            return max(0,A[i])
    m=(i+j)//2
    maxL = max_sum_v3_rec_bis(A,i,m)
    maxR = max_sum_v3_rec_bis(A, m+1, j)
    maxML = max}(\operatorname{acc
    maxMR = max(accumulate(A[m+1:j+1]))
    return max(maxL, maxR, maxML+ maxMR)
def max_sum_v3(A):
    retürn max_sum_v3_rec_bis(A,0,len(A) - 1)
```

For this, we need to define a recurrence relation:

$$
T(n)=2 T(n / 2)+c n
$$

The algorithm splits the input in two "equally-sized" sub-problems ($\mathbf{m}=\mathbf{i}+\mathbf{j} / / \mathbf{2}$) and applies itself recursively 2 times.
The accumulate after the recursive part is linear cn.

maxsum - version 3

```
from itertools import accumulate
def max_sum_v3_rec_bis(A,i,j):
    if \overline{i}==-
            return max(0,A[i])
    m=(i+j)//2
    maxL = max_sum_v3_rec_bis(A,i,m)
    maxR = max_sum_v3_rec_bis(A, m+1, j)
    maxML = max (ac\overline{cumulate}(A[m:-len(A) + i -1: -1]))
    maxMR = max(accumulate (A[m+1:j+1]))
    return max(maxL, maxR, maxML+ maxMR)
def max_sum_v3(A):
    retürn max_sum_v3_rec_bis(A,0,len(A) - 1)
```

For this, we need to define a recurrence relation:

$$
T(n)=2 T(n / 2)+c n
$$

Theorem

Let a and b two integer constants such that $a \geq 1 \mathrm{e} b \geq 2$, and let c, β be two real constants such that $c>0$ e $\beta \geq 0$. Let $T(n)$ be defined by the following recurrence:

$$
T(n)= \begin{cases}a T(n / b)+c n^{\beta} & n>1 \\ \Theta(1) & n \leq 1\end{cases}
$$

Given $\alpha=\log a / \log b=\log _{b} a$, then:

$$
T(n)= \begin{cases}\Theta\left(n^{\alpha}\right) & \alpha>\beta \\ \Theta\left(n^{\alpha} \log n\right) & \alpha=\beta \\ \Theta\left(n^{\beta}\right) & \alpha<\beta\end{cases}
$$

$$
\alpha=\log _{2} 2=1 \text { and } \beta=1
$$

$$
T(n)=\Theta(n \log n)
$$

