
Scientific Programming:
Part B

Lecture 2

Luca Bianco - Academic Year 2019-20
luca.bianco@fmach.it
[credits: thanks to Prof. Alberto Montresor]

Introduction

Complexity

The complexity of an algorithm can be defined as a function
mapping the size of the input to the time required to get the result.

We need to define:
1. How to measure the size of the input

2. How to measure time

How to measure the size of inputs

In some cases (e.g. factorial of a number) we need to consider how many
bits we use to represent inputs

Measuring time is trickier...

We need a more abstract representation of time

Random Access Model (RAM): time
Let’s count the number of basic operations

What are basic operations?

(unless numbers have arbitrary precision)

(modern GPUs are highly parallel and can be constant)

Example: minimum

def my_faster_min(S):
 min_so_far = S[0] #first element
 i = 1
 while i < len(S):
 if S[i] < min_so_far:
 min_so_far = S[i]
 i = i +1
 return min_so_far

Let’s count the number of basic operations for min.

● Each statement requires a constant time to be executed (even len???)
● This constant may be different for each statement
● Each statement is executed a given number of times, function of n (size of input).

Example: minimum
Let’s count the number of basic operations for min.

● Each statement requires a constant time to be executed (even len???)
● This constant may be different for each statement
● Each statement is executed a given number of times, function of n (size of input).

def my_faster_min(S):
 min_so_far = S[0] #first element
 i = 1
 while i < len(S):
 if S[i] < min_so_far:
 min_so_far = S[i]
 i = i +1
 return min_so_far

Cost Number of times

c1 1
c2 1
c3 n
c4 n-1
c5 n-1 (worst case)
c6 n-1
c7 1

T(n) = c1 + c2 + c3*n + c4*(n-1) + c5*(n-1)+c6*(n-1)+c7
 = (c3+c4+c5+c6)*n + (c1+c2-c4-c5-c6+c7) = a*n + b

def lookup_rec(L, v, start,end):
 if end < start:
 return -1
 else:
 m = (start + end)//2
 if L[m] == v: #found!
 return m
 elif v < L[m]: #look to the left
 return lookup_rec(L, v, start, m-1)
 else: #look to the right
 return lookup_rec(L, v, m+1, end)

Example: lookup
Let’s count the number of basic operations for lookup.

● The list is split in two parts: left size ⌊(n-1)/2⌋ right size ⌊n/2⌋

def lookup_rec(L, v, start,end):
 if end < start:
 return -1
 else:
 m = (start + end)//2
 if L[m] == v: #found!
 return m
 elif v < L[m]: #look to the left
 return lookup_rec(L, v, start, m-1)
 else: #look to the right
 return lookup_rec(L, v, m+1, end)

Example: lookup
Let’s count the number of basic operations for lookup.

● The list is split in two parts: left size ⌊(n-1)/2⌋ right size ⌊n/2⌋

Cost Executed?
end < start end ≥ start

c1 1 1
c2 1 0

c3 0 1
c4 0 1
c5 0 0 (worst case)
c6 0 1
c7 + T(⌊(n-1)/2⌋) 0 0/1

c7+ T(⌊n/2⌋) 0 1/0

Note: lookup_rec is not a basic operation!!!

Lookup: recurrence relation
Assumptions:

● For simplicity, n is a power of 2: n = 2^k
● The searched element is not present (worst case)
● At each call, we select the right part whose size is n/2 (instead of (n-1)/2)

if start > end (n=0):

if start ⩽ end (n>0):

Recurrence relation:

Lookup: recurrence relation
Solution

Remember that:

as seen before, the complexity is logarithmic
Note: in computer science log is log2.

Complexity functions → “big-Oh” notation (omicron)

So far…

● Lookup: T(n) = d log n + e

● Minimum: T(n) = a n + b

● Naive Minimum: T(n) = f n^2 + g n + h

Asymptotic notation

we ignore the “less impacting” parts (like constants or n in
naive, …) and focus on the predominant ones

logarithmic O(log n)

linear O(n)

quadratic O(n^2)

Complexity classes

Asymptotic notation

Note: these are “trends” (we hide all constants that might have an impact for small
inputs). For small inputs exponential algorithms might still be acceptable (especially
if nothing better exists!)

Asymptotic notation

[Miller, Ranum, Problem solving with Algorithms and Data structures]

O,Ω,Θ notations

O,Ω,Θ notations

O,Ω,Θ notations

O,Ω,Θ notations

m

(lower bound, Ω)

(upper bound, O)

O,Ω,Θ notations

m

(lower bound, Ω)

(upper bound, O)

Less relevant,
small input

More relevant,
inputs tend to grow

Exercise: True or False?

0

In graphical terms

m

Exercise: True or False?

lower bound (Ώ)

upper bound (O)

Exercise: True or False?

lower bound (Ώ)

f(n) = Ώ(n^2)

Exercise: True or False?

upper bound (O)

f(n) = O(n^2)

In graphical terms: 3n^2+7n is Θ(n^2)

m

True or False?

True or False?

we cannot find a constant C making n grow faster than n^2

Exercise:

Properties

Meaning:
● We only care about the highest degree of the polynomial

● Multiplicative constants, do not change the asymptotic complexity
(e.g. constants costs due to language, technical implementation,...)

Properties

We only care about the “computationally more expensive” part to
solve of the algorithm.

Properties

for i in range(n):
call_to_function_that_is_n^2_log_n()

Classification

Examples:
No matter the exponent, (log n)^r will
always be better than n)...
Same thing for n log n vs n etc...

Complexity of maxsum: Θ(n^3)

Intuitively:
we perform two loops of length N
one into the other → cost N^2

sum is not a basic operation (cost N):

 overall cost N^3

Complexity of maxsum: O(n^3)

O(n^3)

Complexity of maxsum: Ω(n^3)

Θ(n^3)
Ω(n^3)1/8

Complexity of maxsum -version 2: Ω(n^2)

Complexity of maxsum -version 2: Θ(n^2)

Gauss

Complexity of maxsum -version 4: Θ(n)

This is rather easy!
Constant operations (sum and
max of 2 numbers) performed
n times

Complexity is Θ(n)

Complexity of maxsum -version 3

Recursive algorithm,
recurrence relation

Bear with me a minute.
We will get back to this
later…!

Recurrences

Recurrences

Master Theorem

Note: the schema covers cases when input of size n is split in b sub-problems,
to get the solution the algorithm is applied recursively a times. cnᵝ is the cost of
the algorithm after the recursive steps.

Examples

Note: the schema covers cases when input of size n is split in b sub-problems,
to get the solution the algorithm is applied recursively a times. cnᵝ is the cost of
the algorithm after the recursive steps.

Algo: splits the input in two, applies the
procedure recursively 4 times and has a
linear cost to assemble the solution at the
end.

n^1.58

maxsum - version 3

The algorithm splits the input in two
“equally-sized” sub-problems (m = i+j//2) and
applies itself recursively 2 times.
The accumulate after the recursive part is
linear cn.

maxsum - version 3

