Scientific Programming:
Part B

Lecture 3

Luca Bianco - Academic Year 2019-20
luca.bianco@fmach.it
[credits: thanks to Prof. Alberto Montresor]

Problem vs. algorithm complexity

‘ Goal: reason about complexity of problems and algorithms

e In some cases, it is possible to improve what is considered
"normal"

e In other cases, it is impossible to improve the existing
solutions

o What is the relation between a problem and the algorithms
that solve it?

- Back to basics!

e Sums

e Products

Sum of binary (or any other base) numbers

Basic sum algorithm — sum()

@ cach of the n bits have to be considered

e total cost is equal to cn (¢ = the cost required to sum three
bits and generate the carry-over)

INNNINNNNNNNNNNN

101100110110111,

111101101101011 Note: i programming
101010100100010 o e aation o

to the biggest possible
integer it is done by the
CPU.

After that » arbitrary
precision and therefore we
would need an algorithm
like this.

Sum of binary (or any other base) numbers

, NNUSSNNNNENSRN

Question 1011001101101114
Is there a better method? 111 101 101101011
101010100100010

|:> Nope. There is no better way (improvements like grouping bits just deliver
better constants) 4

Sketch of the proof. Reasoning by contradiction:

since to compute the result | have to consider all bits,
if there existed a better method, it would skip some bits

= hence the solution might not be correct if only those bits are changed!

Lower bound to the complexity of a problem

Notation Q(f(n)) — Lower bound

The computational complexity of a problem is equal to Q(f(n)) if
all possible algorithms solving the problem have a complexity which
is equal to ¢ - f(n) or larger, where ¢ is an appropriate constant.

Lower bound for the sum problem

The problem of summing two binary numbers with n bits is 2(n).

Product of binary (or any other base) numbers

"Elementary school" algorithm — prod()
@ bit-by-bit product

@ total cost cn?

*)%
T

X K | *|*
*

M product

% % % % | %%
% % % | %%

plus sums..

R Sl
KK ¥ K XK | K*
X K K XK | K*

Arithmetic algorithms

Comparison of computational complexity

e Sum : Legm Ny =0(n)
o Products : Tproa(n) = O(n?)

We could conclude that:

@ The product problem is inherently more costly than the sum
problem

@ This confirms our intuition

) Wrong. We are comparing problems but we here
in fact we have solutions. What | am saying is that
THIS solution to compute the product is more
costly than the sum!!!

Arithmetic algorithms

Comparing problems

| To prove that the product problem is more costly than the sum

problem, we must prove that there is no solution in linear time for
the product.

We compared the algorithms, not the problems!

e We only know the "elementary school" algorithm for the sum is
more efficient than the "elementary school" algorithm for the
product.

e In 1960, during a conference, Kolmogorov claimed that the product
has Q(n?) lower bound

e A week later, he was proved wrong!

Product of binary numbers - Divide-et-impera

Binary number product
X=a-2"%24+b

Y=c-2"*+d
XY =ac-2" + (ad + bc) - 22 + bd

X[a || b |
Y ¢ | d |

Decimal number product: 9977 x 2348

X =a 10" +b

Y =c-10"% +d
XY =ac- 10" + (ad + be) - 10™2 + bd
XY =99 x 23 - 10 + (99 x 48 + 77 x 23) - 102 + 77 x 48

X| w=99 | b=77 |
Y| ¢=23 | d=48 |

Split the numbers in 2.
(nis the number of
digits).

The most significant
and least significant
part.

Apparently we now
have 4 multiplications
(multiply by 2”*n or
2"n/2 is actually
moving the digits:
shift)

Product of binary numbers - Divide-et-impera

pdi(X, Y, int n)

if n ==1 then
| return X|[0] - Y[0]
else
break X in two parts a;b and Y in two parts ¢; d
return pdi(a,c,n/2) - 2"+
(pdi(a,d,n/2) + pdi(b,c,n/2)) - 2"/2+
pdi(b,d, n/2)

] a =1
D)= { AT(n/2)+c2-n n>1

Note: multiplication by 2t is linear (shift) of t positions

Recursive code for n/2
bits.

Recombination of
results: sums and
multiplications by
2”n/2 =+ linear cost.

Product of binary numbers - Divide-et-impera

~ Theorem

Let a and b two integer constants such that a > 1 e b > 2, and let
¢, B be two real constants such that ¢ > 0 e 8 > 0. Let T'(n) be
defined by the following recurrence:

a n CTLB n
T(n)={T(/b) + 31

c1 - 1 o(1) n<1
T(n) — 4T(/2) Given o = log a/logb = log;, a, then:
n +co-n n>1 o e
T(n) = {@(no‘ logn) a=4
o(n?) a<f

a=logy4 =2
Bi=
T(n) = @(nz) - was all this mess pointless?!?

Product of binary numbers - Divide-et-impera

Comparing the computational complexity

o Product : Tprea(n) = O(n?)
e Product : Tp,4(n) = O(n?)

All this, for nothing?

Question: Is it possible to improve this idea?

Note that this recursive version calls itself 4 times

pdi(X, Y, int n)

if n == 1 then

Can we call the function less than 4 ’1 return X|[0] - Y'[0]
. else
times? break X in two parts a;b and Y in two parts ¢;d
Sums and shifts cannot be faster than 6 return pdi(a,c,n/2) - 2"+
(n) (pdi(a,d,n/2) + pdi(b, c,n/2)) - 2*/2+

pdi(b,d,n/2)

[more on this later... let’s step back a sec]

c1

)= { 4T(n/2)+ca-n n>1

Product of complex numbers (courtesy of Gauss)

Multiplying complex numbers

: . : a: real part
e (a+bi)(c+ di) = [ac — bd] + [ad + bcli b*i imilginary
e Input: a, b, ¢, d part
@ Output: axc—bxd,axd+bxc ,
|*i = _

Questions

Let’s consider a computing model where scalar multiplications cos
1, scalar sums/subtractions cost 0.01

e How much does it cost to multiply two complex numbers? 4 multiplications
and 2 sums

back then very
expensive to
multiply numbers
(cost: 4.02)

e Can you do better than this?

Product of complex numbers (courtesy of Gauss)

(@ + bi)(c + di) = [ac — bd] + [ad + bc]i

Input: a, b, ¢, d Multiplication: costs 1

Sum/subtraction: cost 0.01
Output: axc—bxd,axd+bxc Hm/sy !

) |)
h h2 A2 =rh3-ml-m2

@ The naif algorithm associated to the defintion cost 4.02

e Gauss solution (1805):
Input: a,b,c,d, Output: Al = ac — bd, A2 = ad + bc

ml = a¥Xc

m2 = bxd

Al = ml—m2=ac—bd

m3 = (a+b)x (c+d)=ac+ad+bc+bd @M cleverpart
A2 = m3—ml—m2=ad+ bc

This makes it 3
multiplications and 5
sums/subtractions
(25% improvement).

In this case, the cost is 3.05.

Karatsuba Algorithm (1962) (Inspired by Gauss)

(a + bi)(c+ di) = [ac — bd] + [ad + bc]i
Input: a, b, ¢, d

Output: axc—bxd,axd+bxc

Ai=axc

A3 =bxd

m = (a+b) X (c+d) =ac+ad+bc+ bd
Ay =m — A; — A3 =ad+ be

Three recursive calls that
split the numbers in n/2
digits.

boolean || KARATSUBA(boolean[] X, boolean|[] Y, int n)

if n ==1 then
| return X([0] - Y[0]
else
break X ina;beY inc;d
Al = KARATSUBA(a,c,n/2)
A3 = KARATSUBA (b, d, n/2)
m = KARATSUBA(a + b,c + d,n/2)
A2=m — A1 — A3
return Al-2" + A2.2"/2 4 A3

Recurrence:

c n=1
T(n):{ 31T(n/2)—|—(32-n n>1

Karatsuba Algorithm (1962) (Inspired by Gauss)

(Recurrence J

¢ n=1
T(n)z{ 31T(n/2)+cz-n k- |

(Applying the master theorem J

a =logy 3 ~ 1.58
B=1
T(n) = ©(n'"%)

Karatsuba Algorithm (1962) (Inspired by Gauss)

Multiplication of real numbers
same reasoning applied to real numbers.

To compute:

5
X =X '2n/'+X2

< 2"/2 + ¥,

y=Mn
x-y=xy1 2"+ (13 +x201) - 2"+ x09m
We can calculate:
X=xy
Y=xy
Z=(x+x)- 0 +y)—-X-Y
=y +x1y2+x2)1 + x2)2) — X1 Y1 — X202

P =X TR LY

Example (decimal values):

1234 % 7721 = 12 % 10* 4+ 34 - 77 * 10* + 34 = 9527714
X=(12%x77)=924

Y= (21%34) =714

Z=(12434)x(77T+21)-X-Y
=46 %98 — 924 — 714 = 4508 — 924 — 714 = 2870

1234 % 7721 = 924 % 10* + 2870 * 10 + 714 = 9527714

Take home message...

Comparing the computational complexity

& Piodiict & Tealn) =-0(n?) Es. Tpipa(10°) =102
& Product ¢ Digeln) = O %) B T (10°)=18: 10° 1000x
faster
-~ Conclusions !

@ The "naif" algorithm is not always the best...

@ ... there is often space for improvement ...

@ ... unless you can prove the the opposite!

Extensions... Multiplication

o Toom-Cook (1963) Iterated logarithm
o Also called Toom3, its complexity is log
O(nlog 5/ log 3) ~ O(n1.465) (5,00 1] 0
o Karatsuba = Toom?2 (1,2] 1
e "Elementary school" product = Toom1 (2,4] 2
e Schonhage-Strassen (1971) (4, 16] 3
o Complexity: O(n -logn -loglogn) (16,2°] 4
o Based on Fast Fourier Transforms (219 9800061 | 5

e Martin Fiirer (2007)
o Complexity: O(n -logn - 20(°8™ 1))

e Lower bound: Q(nlogn) (conjecture) - still to be proven

Logarithmic cost model

def fact(n):
res = 1
for i in range(1l,n+1):
res = res * 1
return res

print(fact(5))

print(fact(10))
print(fact(20))
print(fact(30))
print(fact(40))

120

3628800

2432902008176640000
265252859812191058636308480000000
815915283247897734345611269596115894272000000000

This algorithm performs n
multiplications, so
8(n)

Is it correct?
Remember that a cost function

goes from the size of the input
to the time.

Logarithmic cost model

def fact(n):

res = 1 This algorithm performs n
for 1 1in range(1,n+l1): multiplications, so

res =res * i e(n)
return res

Is it correct?

What is the size of the input? k =Llog nl Remember that a cost function
How many multiplications, in terms n = 2Ak goes from the size of the input
of k? to the time.

How many bits are necessary, to

Llog n!1=6(n log n
represent the output? _ 2%(* Kk (nlog n) n IS the input!

How much does it cost to multiply S
two numbers of 27k - k bits? O(2°" - k)

What is the complexity of the

N8k LI _ BB w2
factorial (n=2"k multiplications)? O(2° - k%) = O(n’(logn)”)

Sorting algorithms

Goal: evaluate the algorithms based on the type of input
@ In some cases, algorithms behave differently depending on the
characteristics of the input

e Knowing these characteristics in advance enable to choose the
best algorithm for that particular scenario

@ The sorting problem is a good school where to show such
concepts

::> sorting algorithms are already implemented (in general, no need to
reinvent the wheel) , but they are a great training ground.

Sorting

Sorting problem

(*] In ut: A sequence A = Qa.,ag,...,da. Cont.ainin n VathS
1,42, y Un

@ Output: A sequence B = by, by, ..., b, that is a permutation
of A such that b < by <...<b,

Naive approach:
e Search for the minimum, put it in the correct position, reduce
the problem to the n — 1 elements that are left and continue
until the sequence is finished

e This is called selection sort

Selection Sort

#returns the index of the minimum element in A[i:]

def argmin(A,i):
min pos = i
for j in range(i+l, len(A)):
if A[j] < A[min pos]:
min pos = j
return min_pos

def selection sort(A):
for i in range(len(A)-1):
ind = argmin(A,1i)
A[i], A[ind] = A[ind], A[i] #swap

L =1[7,4,2,1,8,3,5]
print("{}".format(L))
selection sort(L)
print("{}".format(L))

(7, 4, 2, 1, 8, 3, 5]
(1, 2, 3, 4, 5, 7, 8]

-

Search for the minimum, put it in the correct position, reduce the problem to
the n — 1 elements that are left and continue until the sequence is finished

argmin(A,i) returns the index of the
minimum element in A[i:]

This function repeatedly searches the
minimum in A[i :], and swaps it with
the element in A[i]

i 0,..,n-1 since the last value is already
in the right position

Se | eCtI O n SO I’t Search for the minimum, put it in the correct position, reduce the problem to
the n — 1 elements that are left and continue until the sequence is finished

#returns the index of the minimum element in A[i:] =0 J=1. j=Z §=8 §=4 =% J=6
def argmin(A,i):
min pos = i
for j in range(i+l, len(A)):
if A[j] < A[min pos]:
min pos = j
return min_pos

def selection sort(A): . _
for i in range(len(A)-1): 2 . . 4 7 8 : 2
ind = argmin(A,1i)
A[i], A[ind] = A[ind], A[i] #swap i=3 1 2 3 7] 4 5

L= [7,4,2,1,8,3,5]
print("{}".format(L))

selection sort(L) i=5 1 2 3 4 5 7 8
print("{}".format(L))
7 4 Z, 1z B, 3, 5] i=6 | 2 3 4 5 7 8

1, 2, 3, 4, 5, 7, 8]

How much does this cost?

Se | eCtl O n SO I’t Search for the minimum, put it in the correct position, reduce the problem to
the n — 1 elements that are left and continue until the sequence is finished

#returns the index of the minimum element in A[i:] How much does this cost?
def argmin(A,i):
min pos = i

for j in range(i+l, len(A)): How many comparisons in argmin(A, i)?
if A[j] < A[min_pos]: _)
min pos = j len(A)-1-i=n-1-i

return min_pos

def selection sort(A): . . .
for i in range(len(A)-1): How many comparisons in selection_sort(A)?

ind = argmin(A,1i)
A[i], Alind] = A[ind], A[i] #swap

3
|
N

1

(n—1—1)

Il
o

L =1[7,4,2,1,8,3,5]
print("{}".format(L))
selection sort(L)
print("{}".format(L))

(7, 4, 2, 1, 8, 3, 5]
(1, 2, 3, 4, 5, 7, 8]

n—1)+(n—2)+...+2+1

= N

n—l) =n?—n/2

I
I M

Complexity is 8(n*2) in worst, average, best
case (the algorithm works in the same way
regardless of the input).

Insertion Sort

The idea of insertion sort is to build a sorted list step by step. In each step, one
element is placed in its correct position on the left-side part of the array.

At each iteration (i):

A[i] — temp
forj:i-1,...,0

if A[j] > Ali]

copy Afj] —A[+1]
AJj] < Ali].

Efficient algorithm to sort small sets of
elements ~100s (small constants)

It is “in-place” there is no need to copy the
list (saves memory!)

already sorted

A
[\

L2 s s [0 f[m2]]4]

store it to tmp and then move

) 14]

| 2 || 3 || S || 10 || 12 |_. push up (copying)
4]
5 08 002
(2 [3 | AN [5 |[10][2]

Insertion Sort

The idea of insertion sort is to build a sorted list step by step. In each step, one element is
placed in its correct position on the left-side part of the array.

def insertion sort(A):
for 1 in range(1,len(A)): The first element is assumed to be a sorted

;gmg i A1] list (with one element).
while j > 0 and A[j-1] > tmp:
Alj]l = A[j-1] The first current element is the second in the
1=3 -1 list. Range starts from 1!
A[j] = tmp

The current element is placed in a TMP

variable, and the values before in the list are
L =1(7,4,2,1,8,3,5] copied up until they are lower than TMP.
print("{}".format(L))

selection sort(L) : .
orint("{}".format(L)) When | find a value that is lower than TMP, |

place the value there
(7, 4, 2, 1, 8, 3, 5]
(1, 2. 3. 4s 3 15 8]

Insertion Sort

def insertion sort(A):
for i in range(1,len(A)):

tmp = A[i]
Ji= i

while j > 0 and A[j-1] > tmp:
A[j]1 = A[j-1]

i=3-1
A[j] = tmp

L= [7:412111813:5]
print("{}".format(L))
selection sort(L)
print("{}".format(L))

(7, 4, 2, 1, 8, 3, 5]
1, 2, 3, 4, 5, 7, 8]

L2 s e lr0][12—

a2 J[3][a][0][n2]

Insertion Sort Execution Example

41 [3])[2][10][2][1][5]][6s
‘Eﬂ 2 | [10][12][1][5][6s6
10 2] [1][5][6
(2] 3] [4] K (2] [1][5][6]
2 [3][4][o] A [][5][s

<— 2 B N O B B 5

L1]

2| [3]

4

U:

[1

2

3

4

40

[1112][3][4][5][6]][10][12]

[https://www.geeksforgeeks.org |

https://www.geeksforgeeks.org

def insertion sort(A):
for 1 in range(1,len(A)):

Insertion Sort: complexity lant Ay
j =i
while j > 0 and A[j-1] > tmp:
A1 = Alj-1)
3= -1
The cost does not depend only on the size of the input but A[j1 = tmp

also on how the values are sorted

What is the cost if the list is already sorted?

e the for is executed (n operations), never gets into the
while: 8(n)

What is the cost if the list is sorted in reverse order?

e the for is executed (n operations), for each, all
elements have to be pushed up (n operations): 8(n*2)

What is the cost on average? (informally, half list sorted)

e the for is executed (n operations), for each, half of the
elements have to be pushed up (n operations): 8(n*2)

Merge Sort

IDEA: Sorting two sublists already sorted is fast!
MergeSort is based on the divide-et-impera technique

Divide: Break (virtually) the sequence of n elements in two
sub-sequences

Impera: Call MergeSort recursively on both sub-sequences (note that
sub-lists of one element are sorted lists!)

Combine: Join (merge) the two sorted sub-sequences

Merge Sort

Keep dividing

- 1 sized lists are ordered!

)
)
7 X

28, 13, 65, 17

33.21,7,48, 28, 13,65, 17

7

33,21,7,48

)
(33,21j (7,48) (28,13) (65,17)

¢
(

Merge Sort

7,13,17, 21, 28, 33, 48, 65] -

¢

/ \
(7 21, 33 48 13 17, 28 65)
(

21,33 748) (1328) 17,65

{bdbdban ?—

ﬁ

1 List only: solution

merge sorted lists
into bigger sorted
lists

1 element only: sorted!

Merge Sort

Merge sort requires three methods:

¢

33,21,7,48, 28, 13, 65, 17

(33,21,7,48

33,21

(

merge: gets two sorted lists and produces a sorted list with all the elements.
Builds the return list by getting the minimum element of the two lists, “removing”
it from the corresponding list and appending it to the list with the result.
‘removal” can be done by using two indexes pointing to the smallest elements
of each of the two (sub)lists and incrementing the index of the minimum of the
two (i.e. the element that is also copied to the result list);

recursiveMergeSort: gets an unordered (sub)list, the index of the
beginning of the list and the index of the end of the list and recursively splits it

in two halves until it reaches lists with length 0 or 1, at that point it starts
merging pairs of sorted lists to build the result (with merge);

mergeSort gets an unordered list and applies the recursiverergesort method to
it starting from position 0 to len—1.

dhdbds

Merge sort: implementation

The Merge method:

gets two sorted lists and produces a
sorted list with all the elements. Builds
the return list by getting the minimum
element of the two lists, “removing” it from
the corresponding list and appending it to
the list with the result (using two indexes
pointing to the minimum of each list).

note: the two lists can be sublists of one list: | 4

(33,21, 7,48, 28, 13, 65, 17)
(=217) (2816517)
/N /N
(s321) (748) (2813) (6517)

Merge sort: implementation

The Merge method:

gets two sorted lists and produces a
sorted list with all the elements. Builds
the return list by getting the minimum
element of the two lists, “removing” it from
the corresponding list and appending it to
the list with the result (using two indexes
pointing to the minimum of each list).

(33, 21,7, 48, 28, 13, 65, 17)
(=217) (2816517)
/N /N
(s321) (748) (2813) (6517)

Merge sort: implementation

The Merge method:

gets two sorted lists and produces a
sorted list with all the elements. Builds
the return list by getting the minimum
element of the two lists, “removing” it from
the corresponding list and appending it to
the list with the result (using two indexes
pointing to the minimum of each list).

(33, 21,7, 48, 28, 13, 65, 17)
(=217) (2816517)
/N /N
(s321) (748) (2813) (6517)

Merge sort: implementation

The Merge method:

gets two sorted lists and produces a
sorted list with all the elements. Builds
the return list by getting the minimum
element of the two lists, “removing” it from
the corresponding list and appending it to
the list with the result (using two indexes
pointing to the minimum of each list).

(33,21, 7,48, 28, 13, 65, 17)
(=217) (2816517)
/N /N
(s321) (748) (2813) (6517)

Merge sort: implementation

The Merge method:

gets two sorted lists and produces a
sorted list with all the elements. Builds
the return list by getting the minimum
element of the two lists, “removing” it from
the corresponding list and appending it to
the list with the result (using two indexes
pointing to the minimum of each list).

(33,21, 7,48, 28, 13, 65, 17)
(=217) (2816517)
/N /N
(s321) (748) (2813) (6517)

Merge sort: implementation

The Merge method:

gets two sorted lists and produces a
sorted list with all the elements. Builds
the return list by getting the minimum
element of the two lists, “removing” it from
the corresponding list and appending it to
the list with the result (using two indexes
pointing to the minimum of each list).

(33,21, 7,48, 28, 13, 65, 17)
(=217) (2816517)
/N /N
(s321) (748) (2813) (6517)

Merge sort: implementation

The Merge method:

gets two sorted lists and produces a
sorted list with all the elements. Builds
the return list by getting the minimum
element of the two lists, “removing” it from
the corresponding list and appending it to
the list with the result (using two indexes
pointing to the minimum of each list).

Merge sort: implementation (J
(33,21,7,48) (28, 13, 65, 17)
AN P
(33,21) (7,48) (28,13) (65,17)
The Merge method:

gets two sorted lists and produces a
sorted list with all the elements. Builds
the return list by getting the minimum
element of the two lists, “removing” it from
the corresponding list and appending it to
the list with the result (using two indexes
pointing to the minimum of each list).

(33, 21,7,48, 28, 13,65, 17)

(33,21,7,48) (28, 13,65, 17)

Merge sort: merge

def merge(A, first, last, mid):
i first
] mid + 1 33, 21 7,48 28, 13 65, 17

B

“ Shdbdbdn
while i<= mid and j<=last:

if A[i] <= A[j]:
B.append(A[i])

Dl 1
e1sef = Variables i and j are used to scan the values of the two
B.append(A[j]) sublists (mid is the mid-point between the two sorted
g sublists).
while i <= mid:
B.append(A[i])
i=di+1 The first while loop compares the elements when both
for & in range(ieniBiy: Ali:mid+1] and AJ[j:last+1] are not empty, add the smaller
A[first E k] = B[k] to B, and increase either i or j

The second while loop moves the remaining elements in

A=11,7,9, 11, 4, 5, 6, 13,19] Ali:mid+1] to B

print(A)

merge(A,0,8,3) The elements in B are smaller than those in A[j:last+1]
PEIDLLA) They are moved back into A[first:first+len(B)]

(1. 7, 9, 11, 4, 5; 6, 135 :19]

[1; 4; 55 6; 7, 9, 11; 13;.:19]

Merge sort. Cost of merge

What is the computational cost of Merge ()?

Every time we place one element (and we perform one
comparison), so in total n comparisons = O(n)

def merge(A, first, last, mid):
i first
] mid + 1
B =[]
while i<= mid and j<=last:

if A[i] <= A[j]:
B.append(A[i])

i=1+1
else:

B.append(A[j])

j:j+1

while i <= mid:
B.append(A[i])
i=i+1

for k in range(len(B)):
A[first + k] = B[k]

A= [1,7, 9, 11; 4,'5; 6; 13;19]

print(A)

merge(A,0,8,3)

print(A)

1, 7, 9. 11, 4, 5; 6, 13; :19]
El5: 4; 5 65 59, 45 135.519]

Merge sort. Complete code

def merge(A, first, last, mid):

i =first
j=mid + 1 def recursive merge sort(A, first, last):
B =[] if last > first:
: m = (first + last) //2
while i<= mid and j<=last: recursive merge sort(A,first,m)
if Aéll <= ﬁ[i]g recursive merge_sort(A,m+l, last) If we have some
i'ipﬁeﬂl‘ 1) MELE (A, TIDSLLASE UR) elements (last > first):
elseé o def merge sort(A): e sort from first
.'preE § il recursive merge sort(A, 0, len(A)-1) tom
while i l=_m:i'd- e sort from m+1
B.append(A[i]) B b to last
i a4 l;;rEanS 71, 44, 33, 22, 9, 7, -1, 12,13] e merge the two
for k in range(len(B)): merge_sort(L) sublists
Alfirst + k] = B[K] print(L)

A=[1,7, 9, 11, 4, 5, 6, 13,10] [12, 71, 44, 33, 22, 9, 7, -1, 12, 13]
:] -1, 7, 9, 12, 12, 13, 22, 33, 44, 71]

print(A)

merge(A,0,8,3)

print(A)

i, 7, 9. 11, 4, 5; 6, 13; 19]
L5 4; 5 6; 7,9, AL, 13;.:19]

Merge sort.

33, 21, 7, 48, 28, 13, 65, 17

call
merge_ sort :> (08 21 . 48) (28 18, 65 17)

/
(3321 (2813)(6517)

B e e

Merge sort.

(33, 21, 7, 48, 28, 13, 65, 17

/
(sse1748)
/

call
merge_sort (33, 21)

RRITEEID TessGnsnnnsny A
.
.

9, 0

call merge_sort
on 33 (sorted) :>
call merge_sort

on 21 (sorted)
merge the two!

Merge sort.

(33 21 7. 48, 28 13,65, 17

/
(sset74)
/

0

Merge sort.

(33, 21, 7, 48, 28, 13, 65, 17

/
(33, 21,7, 48)

.

Merge sort.

(33, 21, 7, 48, 28, 13, 65, 17

/
(33,21,7,48)
N
(21, 33 j (7,48)

Merge sort.

(33, 21, 7, 48, 28, 13, 65, 17

(33, 21, 7, 48)

.
-

Merge sort.

(33, 21, 7,48, 28, 13, 65, 17

/
(3,21,7,48 |

.
.

Merge sort.

(33, 21, 7,48, 28, 13, 65, 17

/
(33, 21,7, 48)

£\
(2188) (748)

Merge sort.

(33,21, 7,48, 28, 13, 65, 17

/

33,21,7,48

(2133) (748)

Merge sort.

(33, 21,7,48, 28, 13, 65, 17

/
(33,21,7, 48)

--

(2133)(748)

Merge sort.

(33, 21, 7, 48, 28, 13, 65, 17)

(7.21, 33, 48) <j call
merge_sort

Merge sort.

(33, 21, 7, 48, 28, 13, 65, 17)

/ \
(721,334) (13172865 |

U

(7,18, 17, 21, 28, 38, 48, 65)

Merge sort. Cost

Simplifying assumptions:
e n =2k, i.e.the number of subdivisions is equal to k = log n;
e All the subsequences have size that are exact powers of 2

Computational cost:

T(n) : n=1
n)—
2T(n/2)+dn n>1

Merge sort. Cost

~~ Theorem

Let a and b two integer constants such that a > 1 e b > 2, and let
¢, B be two real constants such that ¢ > 0 e g > 0. Let T'(n) be
defined by the following recurrence:

T(n) = aT(n/b) +cn® n>1
"= leq n<1

Given a = loga/logb = logy a, then:

\

{@(n“) a>
T(n) = { O(n°logn) a =4
O(nf) a<f
- Computational cost: \
n=1
T'(n)
2T (n/2)+dn n>1
>

a=log22=1

» o(n log n)

No matter the type of input!

Quick sort

e This algorithm is based on a divide-et-impera strategy

We will see that...
e Average case: O(n log n), Worst case: O(n*2)

e Average case vs worst case: the multiplicative factor of QuickSort is better than
MergeSort and QuickSort is in-place (does not need a tmp list)

e Itis possible to use “heuristic” techniques to avoid the worst case hence it is often
preferred to other algorithms

[more info: R. Sedgewick, "Implementing Quicksort Programs". Communications of the ACM,
21(10):847-857, 1978. http://portal.acm.org/citation.cfm?id=359631]

Quick sort: divide step

[Input

@ Sequence A containing n values
o Indexes first, last such that 0 < first < last <n

(Divide)

e Select a value p € A[first : last + 1] called pivot

|

e Move all the elements in slice A[first : last + 1] in a way that
Vi € A[first : j] :A[i] <p

- at each iteration the
Vi € A[J +1: last] :A[i] >p pivot is put in its right place
o Index j is computed in a way that satisfies such condition

@ The pivot is moved in position Alj]

Quick sort: impera and combine steps

(Impera J

Sort the slices A[first:j] and A[j + 1:last+1] by recursively calling
Quicksort until only single elements are reached

(Combine, j

Do nothing:
e the left subslice A[first:j]
e A[j],
e the right subslice A[j+1:1last+1]

are already ordered

Quick sort

ol ////////,//»| sl1|sf{14f4]15]12]6]2[11][10][7]9]
\Y

I

recursively process
this sublists l4[1]5]2] |6]

l6]1|s[7]4]2] [8] [12|15]11]10][14]09]
(10911 [12] [14]15
2(1] [5] O] (0] (1] [34] [15]

single elements

NOTE: it is not great idea to pick the first element as pivot!!!

Quick sort

[s]1]s]1a]4]15]12]6]2]11]10][7]9]

[6[1[5]7[4]2] [12]15]11]10[14]9]

[10]o]11] [12] [14]15

[w0] [11] [14] [15]

The algorithm makes use of the following methods:

1.

pivot : gets the list, a start and end index, sets the first element as pivot and reorders all
the elements in the list from start to end in such a way that all the elements to the left of
the pivot (i.e. having index lower) are smaller than the pivot and all the elements to the
right (i.e. with index higher) are bigger than the pivot. The function returns the index of
the pivot;

recursiveQuickSort: gets an unordered (sub)list, with start and end positions, finds the
pivot and recursively applies the same procedure to the sublists to the left and right of
the pivot (if sublist has size > 1);

quickSort: gets an unordered list and applies the recursive quick sort procedure to it.

[s]1]s]1a]4]15]12]6]2]11]10][7]9]

Pivot method

[6[1[5]7[4]2] [12]15]11]10[14]9]

[10]of11] [12] [14]15

Pivot partitions the list in two: lower than 6 and higher than 6
Pivot called on this list:

(0] [1r] [14] [15]

Two indexes:
i goes through all the elements
j always points to the last element

smaller than pivot

[s[1[s5]1a]4]15]12]6]2]11]10][7]9]

Pivot method

[6[1[5]7[4]2] [12]15]11]10[14]9]

[10]o]11] [12] [14]15

[10] [11] [14] [15]

Pivot called on this list:

Two indexes:
i goes through all the elements
j always points to the last element

smaller than pivot

[s[1[s5]1a]4]15]12]6]2]11]10][7]9]

Pivot method

[6[1]5]7[4]2] [8] [12]15]11]10]14]9]

[to]of11] [12] [14]15

[10] [11] [14] [15]

Pivot called on this list:

6>1
increment j
swap L[i], L]

i is incremented at all iterations

[s[1[s5]1a]4]15]12]6]2]11]10][7]9]

Pivot method

[6[1]5]7[4]2] [8] [12]15]11]10]14]9]

[to]of11] [12] [14]15

[10] [11] [14] [15]

Pivot called on this list:

6>5
increment j
swap L[i], L[j]

i is incremented at all iterations

[s[1]5]1af4]15]12]6]2]11]10][7]9]

Pivot method

[6[1]5]7[4]2] [8] [12]15]11]10]14]9]

[to]of11] [12] [14]15

[10] [11] [14] [15]

Pivot called on this list:

6<9
do nothing

i is incremented at all iterations

[s[1]5]1af4]15]12]6]2]11]10][7]9]

Pivot method

[6[1]5]7[4]2] [8] [12]15]11]10]14]9]

[to]of11] [12] [14]15

[10] [11] [14] [15]

Pivot called on this list:

6<7
do nothing

i is incremented at all iterations

[s[1[s5]1a]4]15]12]6]2]11]10][7]9]

Pivot method

[6[1[5]7[4]2] [12]15]11]10[14]9]

[10]of11] [12] [14]15

[10] [11] [14] [15]

Pivot called on this list:

6>3
increment j j always points to the last
element smaller than pivot

i is incremented at all iterations

[s[1]5]1af4]15]12]6]2]11]10][7]9]

Pivot method

[6[1]5]7[4]2] [8] [12]15]11]10]14]9]

[to]of11] [12] [14]15

[10] [11] [14] [15]

Pivot called on this list:

6>3
increment j j always points to the last
swap L[i],L[j] element smaller than pivot

J |
601537989

i is incremented at all iterations

[s[1]5]1af4]15]12]6]2]11]10][7]9]

Pivot method

[6[1]5]7[4]2] [8] [12]15]11]10]14]9]

[to]of11] [12] [14]15

[10] [11] [14] [15]

Pivot called on this list:

6<9
do nothing

i is incremented at all iterations

[s[1]5]1af4]15]12]6]2]11]10][7]9]

Pivot method

[6[1]5]7[4]2] [8] [12]15]11]10]14]9]

[to]of11] [12] [14]15

[10] [11] [14] [15]

Pivot called on this list:

6<8
do nothing

i is incremented at all iterations

[s[1]5]1af4]15]12]6]2]11]10][7]9]

Pivot method

[6]1]5]7]4[2] [12T15]11]10]14]9]

[to]of11] [12] [14]15

[10] [11] [14] [15]

Pivot called on this list:

6<9

do nothing
END!

swap L[0], L[j]
return |

i is incremented at all iterations

Quick sort: the code

def pivot(A, first, last):
p = A[first]
j = first
for i in range(first+l, last+l):
if A[i] < p: #A[i] should be to
#the right of p

j =3+ 1 #points to the last
#element smaller than p
Ali]l,A[j] = A[]j],Al[i] #swap the values

Al[first] = A[j] #last smaller is placed at the beginning
A[j] = p #p goes to position j
return j #returns index

def quick sort rec(A,first,last):
if first < last: #if we have more than 1 element
p = pivot(A, first,last)
quick sort_rec(A,first,p-1) #pivot is in the
quick sort rec(A,p+1,last) #right place

def quick sort(A):
quick sort rec(A,0,len(A)-1)

L =532, 71, <44, 33, 22, 0. 70], 12:313]
print(L)

quick sort(L)

print(L)

[12; 71, 44, 33; 22,'9; 7; <1; 12; 13]
-1, 7,. 9, 12, 12, 13, 22,:33, 44, 71]

[sT1]s]u4f4]15]12]6]2]11]10]7]9]

[L2T15]11]10]14]9]

10011 [12] [14]15

Quick sort: complexity

Cost of pivot()

e O(n) [itis only one for loop]

Cost of Quicksort: depends on the partitioning

e Worst partitioning
e Given a list of size n, the list is subdivided in two sublist of size 0
and m— 1 worst case, when list is
o T(n)=T(n—1)+T(0)+O(n) =T(n—1) + O(n) = O(n?) <: ’
. ¢ already sorted
e Question: When do you get the worst case?
' (theorem not seen)

@ Best partitioning

o Given a list of size n, the list is subdivided in two sublist of size n/2 Pick pivot as random

value to heuristicall
o T'(n)=2T(n/2)+0O(n) = O(nlogn) reduce the probabil?ty

of worst case!

Sorting methods: based on comparisons (?!?)

Summary - Sorting algorithms

o SelectionSort - ©(n?) e MergeSort - O(nlogn)
e InsertionSort - Q(n), O(n?) e HeapSort - ©(nlogn)
o ShellSort - (n), O(n%?) e QuickSort - Q(nlogn),

O(n?)

Summary - Sorting algorithms

@ All these algorithms are based on comparisons

e Decisions about sorting are based on comparisons between two
values (<,=,>)

@ Best algorithms: O(nlogn)

o InsertionSort and ShellSort are faster only in special cases

Sorting problem — Lower bound

It is possible to show that any sorting algorithms based on compa-
risons is Q(nlogn).

common feature
of all methods
seen so far

Counting Sort: NOT based on comparisons

Assumption

The numbers to be sorted are includedinarange [0 ...k - 1]

Idea

e Build a list B with k entries, where BJi] contains the number of times
that i is contained in A (B is a list of counters).

e Put back together the elements in A, using the counters in B
(adding elements have value N > 0, N times)

Possible improvements
The interval might not be limited to [0 . . . k — 1]; any known interval
[i, j] can work. In such case, you must subtract i from each number.

First, find the minimum value and subtract all the other values to it
(remembering to add them back at the end)

Input list
4 6 4
Counter
O 1 2
0 2
Sorted list
1 1 2

Counting Sort: code

#A 1s assumed to have all elements in [0,k-1]
def counting sort(A, k):

B = [0]*k

for i in A:
B[i] += 1

j=0

for i in range(len(B)):
while B[i] > 0O:
Alj] =1
B[i] -= 1
j +=

- |

Lim [12, 71, 44, 33, 22, 8, 1, 9, 12;13]
print(L)

counting sort(L, max(L)+1)

print(L)

(12, 71, 44, 33, 22,9, 7, 9, 12, 13}
[e; 7, 9, 12, 12, 13, 22, 33, 44, 71}

Input list

Counter
01 2 3 4 5 6

Sorted list

Counting Sort: complexity

#A 1s assumed to have all elements in [0,k-1] Size of Ain

def counting sort(A, k):
B = [0]*K — adds k zeros to B : 6(k)

for i in A:
B[i] += 1
j=0

for i in range(len(B)):
while B[i] > O:
Alj]l =1
B[i] -= 1
j+=1 executed once for each

element in A: ©(n)

Lim [12, 71, 44, 33, 22, 8, 1, 9, 12;13]
print(L)

counting sort(L, max(L)+1)

print(L)

[12, 1, 44, 33, 22,9, 7,8, 12, 13]
[e; 7, 9, 12, 12, 13, 22, 33, 44, 71}

Overall, complexity: ©(n + k)

#A 1s assumed to have all elements in [0,k-1]
def counting sort(A, k):

B = [Ol*kA:
Counting Sort: complexity

for i in range(len(B)):
while B[i] > 0O:
A[j] =1
Bfi] -=1
j += 1

L =[12, 71, 44, 33, 22, 9, 7, 0, 12,13]

Complexity of CountingSort

B print(L)
counting sort(L, max(L)+1)
| e O(n+k) print(L)
. . . . 12, 71,44, 33, 22..9, 7,06, 12,33
o Ifkis O(’I’L), then the complexity of Counting Sort is O(R) {e, 7. 0, 12 2, A3,.22, 33, AL, 71%

- Counting Sort and lower bounds for sorting

e Counting Sort is not based on comparisons

o Ifkis €(n?), this algorithm is worse than any other algorithm
seen so far

Counting Sort

This can be used to sort every object that can be associated to a sortable
key (can use lists of objects)

- Pigeonhole

e What happens when numbers are not integer, but tuples
associated with a key to be sorted?

e We cannot use counters..

e But we can use lists instead!

3 4 5

12

TR

Exercise: Bubble Sort

Compare two consecutive

elements, if the two are in

inverted order swap them,

move up one place and

continue until you arrive at

the end of the list.

Restart from the beginning 653187 24
and continue until no more

swaps are needed.
[from wikipedia]

Exercise: Bubble Sort

Sketch of the code:

procedure BubbleSort(A:list)
swapFlag < true
while swapFlag do
swapFlag « false
fori < 0 to length(A)-2 do
if A[i] > A[i+1] then
swap(A[i], Ali+1])

swapFlag « true

Optimization: at the end of an
iteration one element is placed in
its final position (at the end of the
list).

6 5 3 18 7 2 4

[from wikipedia]

