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Problem vs. algorithm complexity



Sum of binary (or any other base) numbers

Note: in programming 
languages like python the 
sum is a basic operation, up 
to the biggest possible 
integer it is done by the 
CPU. 
After that → arbitrary 
precision and therefore we 
would need an algorithm 
like this.



Sum of binary (or any other base) numbers

Nope. There is no better way (improvements like grouping bits just deliver 
better constants)  

Sketch of the proof. Reasoning by contradiction:

since to compute the result I have to consider all bits,
if there existed a better method, it would skip some bits 

→ hence the solution might not be correct if only those bits are changed!



Lower bound to the complexity of a problem



Product of binary (or any other base) numbers

product

plus sums..



Arithmetic algorithms

Wrong. We are comparing problems but we here 
in fact we have solutions. What I am saying is that 
THIS solution to compute the product is more 
costly than the sum!!!



Arithmetic algorithms



Product of binary numbers - Divide-et-impera

Split the numbers in 2.
(n is the number of 
digits).
The most significant 
and least significant 
part. 

Apparently we now 
have 4 multiplications
(multiply by 2^n or 
2^n/2 is actually 
moving the digits: 
shift) 



Product of binary numbers - Divide-et-impera

Recursive code for n/2 
bits. 
Recombination of 
results: sums and 
multiplications by 
2^n/2 → linear cost.

Note: multiplication by 2^t is linear (shift) of t positions



Product of binary numbers - Divide-et-impera

was all this mess pointless?!?



Product of binary numbers - Divide-et-impera

Can we call the function less than 4 
times?
Sums and shifts cannot be faster than θ
(n).

[more on this later… let’s step back a sec]
 



Product of complex numbers (courtesy of Gauss)

a: real part
b * i: imaginary 
part

i*i = -1

4 multiplications
and 2 sums
back then very 
expensive to 
multiply numbers
(cost: 4.02)



Product of complex numbers (courtesy of Gauss)

Multiplication: costs 1
Sum/subtraction: cost 0.01

clever part.

This makes it 3 
multiplications and 5 
sums/subtractions 
(25% improvement). 

m1 m2 A2 = m3 - m1 - m2



Karatsuba Algorithm (1962) (Inspired by Gauss)

Three recursive calls that 
split the numbers in n/2 
digits.

Recurrence:



Karatsuba Algorithm (1962) (Inspired by Gauss)



Karatsuba Algorithm (1962) (Inspired by Gauss)

Multiplication of real numbers

same reasoning applied to real numbers.

To compute:

We can calculate:



Take home message...

1000x 
faster



Extensions… Multiplication

still to be proven



Logarithmic cost model

This algorithm performs n 
multiplications, so 
θ(n)

Is it correct?

Remember that a cost function 
goes from the size of the input 
to the time. 



Logarithmic cost model

This algorithm performs n 
multiplications, so 
θ(n)

Is it correct?

Remember that a cost function 
goes from the size of the input 
to the time. 

n IS the input!

What is the size of the input? k = ⌊log n⌋
How many multiplications, in terms 
of k?

n = 2^k

How many bits are necessary, to 
represent the output?

⌊log n!⌋ = θ(n log n)
= 2^k * k

How much does it cost to multiply 
two numbers of 2^k · k bits?

What is the complexity of the 
factorial (n=2^k multiplications)? =



Sorting algorithms

sorting algorithms are already implemented (in general, no need to 
reinvent the wheel) , but they are a great training ground.



Sorting

Naive approach:

● Search for the minimum, put it in the correct position, reduce 
the problem to the n − 1 elements that are left and continue 
until the sequence is finished

● This is called selection sort



Selection Sort Search for the minimum, put it in the correct position, reduce the problem to 
the n − 1 elements that are left and continue until the sequence is finished

argmin(A,i) returns the index of the 
minimum element in A[i:]

This function repeatedly searches the 
minimum in A[i :], and swaps it with 
the element in A[i]
i: 0,..,n-1 since the last value is already 
in the right position



Selection Sort Search for the minimum, put it in the correct position, reduce the problem to 
the n − 1 elements that are left and continue until the sequence is finished

How much does this cost?



Selection Sort Search for the minimum, put it in the correct position, reduce the problem to 
the n − 1 elements that are left and continue until the sequence is finished

How much does this cost?

How many comparisons in argmin(A, i)?

len(A) − 1 − i = n − 1 − i

How many comparisons in selection_sort(A)?

Complexity is θ(n^2) in worst, average, best 
case (the algorithm works in the same way 
regardless of the input).



Insertion Sort

The idea of insertion sort is to build a sorted list step by step. In each step, one 
element is placed in its correct position on the left-side part of the array. 

102 3 5 12

4

103 5 5 122

103 4 5 122

4

push up (copying)

store it to tmp and then move

123 5 10 42

already sorted
At each iteration (i): 

 A[i] → temp
for j: i-1,...,0

if A[j] > A[i]
copy A[j] →A[j+1]

A[j] ← A[i].

Efficient algorithm to sort small sets of 
elements ~100s (small constants)
It is “in-place” there is no need to copy the 
list (saves memory!)



Insertion Sort
The idea of insertion sort is to build a sorted list step by step. In each step, one element is 
placed in its correct position on the left-side part of the array. 

The first element is assumed to be a sorted 
list (with one element). 

The first current element is the second in the 
list. Range starts from 1!

The current element is placed in a TMP 
variable, and the values before in the list are 
copied up until they are lower than TMP.

When I find a value that is lower than TMP, I 
place the value there



Insertion Sort

102 3 4 12

1

102 3 4 121

[https://www.geeksforgeeks.org ]

https://www.geeksforgeeks.org


Insertion Sort: complexity

● the for is executed (n operations), never gets into the 
while: θ(n) 

What is the cost if the list is already sorted? 

● the for is executed (n operations), for each, all 
elements have to be pushed up (n operations): θ(n^2) 

What is the cost if the list is sorted in reverse order? 

● the for is executed (n operations), for each, half of the 
elements have to be pushed up (n operations): θ(n^2) 

What is the cost on average? (informally, half list sorted) 

The cost does not depend only on the size of the input but 
also on how the values are sorted



Merge Sort
IDEA: Sorting two sublists already sorted is fast!

MergeSort is based on the divide-et-impera technique 

Divide: Break (virtually) the sequence of n elements in two
sub-sequences

Impera: Call MergeSort recursively on both sub-sequences (note that 
sub-lists of one element are sorted lists!)

Combine: Join (merge) the two sorted sub-sequences



Merge Sort

Keep dividing

1 sized lists are ordered!



Merge Sort

merge sorted lists 
into bigger sorted 
lists

1 List only: solution

1 element only: sorted!



Merge Sort

Merge sort requires three methods:

1. merge: gets two sorted lists and produces a sorted list with all the elements. 
Builds the return list by getting the minimum element of the two lists, “removing” 
it from the corresponding list and appending it to the list with the result. 
“removal” can be done by using two indexes pointing to the smallest elements 
of each of the two (sub)lists and incrementing the index of the minimum of the 
two (i.e. the element that is also copied to the result list);

2. recursiveMergeSort: gets an unordered (sub)list, the index of the 
beginning of the list and the index of the end of the list and recursively splits it 
in two halves until it reaches lists with length 0 or 1, at that point it starts 
merging pairs of sorted lists to build the result (with merge);

3. mergeSort gets an unordered list and applies the recursiveMergeSort method to 
it starting from position 0 to len−1.



Merge sort: implementation

The Merge method:

gets two sorted lists and produces a 
sorted list with all the elements. Builds 
the return list by getting the minimum 
element of the two lists, “removing” it from 
the corresponding list and appending it to 
the list with the result (using two indexes 
pointing to the minimum of each list). 

4 6 8 9

2 3 7 7

i

j

note: the two lists can be sublists of one list: 4 6 8 9
i

2 3 7 7
j



Merge sort: implementation

The Merge method:

gets two sorted lists and produces a 
sorted list with all the elements. Builds 
the return list by getting the minimum 
element of the two lists, “removing” it from 
the corresponding list and appending it to 
the list with the result (using two indexes 
pointing to the minimum of each list).

4 6 8 9

2

3 7 7

i

j

2



Merge sort: implementation

The Merge method:

gets two sorted lists and produces a 
sorted list with all the elements. Builds 
the return list by getting the minimum 
element of the two lists, “removing” it from 
the corresponding list and appending it to 
the list with the result (using two indexes 
pointing to the minimum of each list).

4 6 8 9

2 3

7 7

i

j
2 3



Merge sort: implementation

The Merge method:

gets two sorted lists and produces a 
sorted list with all the elements. Builds 
the return list by getting the minimum 
element of the two lists, “removing” it from 
the corresponding list and appending it to 
the list with the result (using two indexes 
pointing to the minimum of each list).

2 3

4 6 8 9

7 7

i

j
2 3

4



Merge sort: implementation

The Merge method:

gets two sorted lists and produces a 
sorted list with all the elements. Builds 
the return list by getting the minimum 
element of the two lists, “removing” it from 
the corresponding list and appending it to 
the list with the result (using two indexes 
pointing to the minimum of each list).

2 3 4

4 6 8 9

7 7

i

j
2 3

6



Merge sort: implementation

The Merge method:

gets two sorted lists and produces a 
sorted list with all the elements. Builds 
the return list by getting the minimum 
element of the two lists, “removing” it from 
the corresponding list and appending it to 
the list with the result (using two indexes 
pointing to the minimum of each list).

62 3 4

4 6 8 9

7 7

i

j
2 3

7



Merge sort: implementation

The Merge method:

gets two sorted lists and produces a 
sorted list with all the elements. Builds 
the return list by getting the minimum 
element of the two lists, “removing” it from 
the corresponding list and appending it to 
the list with the result (using two indexes 
pointing to the minimum of each list).

62 3 4 7 7

4 6 8 9

7 7

i

j
2 3



Merge sort: implementation

The Merge method:

gets two sorted lists and produces a 
sorted list with all the elements. Builds 
the return list by getting the minimum 
element of the two lists, “removing” it from 
the corresponding list and appending it to 
the list with the result (using two indexes 
pointing to the minimum of each list).

6 92 3

i

j

4 87 7



Merge sort: merge

Variables i and j are used to scan the values of the two 
sublists (mid is the mid-point between the two sorted 
sublists).

The first while loop compares the elements when both 
A[i:mid+1] and A[j:last+1] are not empty, add the smaller 
to B, and increase either i or j

The second while loop moves the remaining elements in 
A[i:mid+1] to B

The elements in B are smaller than those in A[j:last+1] 
They are moved back into A[first:first+len(B)]



Merge sort. Cost of merge 

What is the computational cost of Merge ()? 

Every time we place one element (and we perform one 
comparison), so in total n comparisons ⇒ O(n)



Merge sort. Complete code 

If we have some 
elements (last > first):

● sort from first 
to m

● sort from m+1 
to last

● merge the two 
sublists



Merge sort. 

call 
merge_sort



Merge sort. 

call 
merge_sort

call merge_sort 
on  33 (sorted)
call merge_sort 
on 21 (sorted)
merge the two!



Merge sort. 



Merge sort. 



Merge sort. 



Merge sort. 



Merge sort. 



Merge sort. 



Merge sort. 



Merge sort. 



Merge sort. 

call 
merge_sort



Merge sort. 



Merge sort. Cost 

Simplifying assumptions:
● n = 2^k , i.e. the number of subdivisions is equal to k = log n;
● All the subsequences have size that are exact powers of 2



Merge sort. Cost 

α = log2 2 = 1
β = 1 θ(n log n)

No matter the type of input!



Quick sort

● This algorithm is based on a divide-et-impera strategy

We will see that…

● Average case: O(n log n), Worst case: O(n^2)
 

● Average case vs worst case: the multiplicative factor of QuickSort is better than 
MergeSort and QuickSort is in-place (does not need a tmp list)

● It is possible to use “heuristic” techniques to avoid the worst case hence it is often 
preferred to other algorithms

 

[more info: R. Sedgewick, "Implementing Quicksort Programs". Communications of the ACM, 
21(10):847-857, 1978. http://portal.acm.org/citation.cfm?id=359631]



Quick sort: divide step

at each iteration the
pivot is put in its right place 



Quick sort: impera and combine steps

e

until only single elements are reached



Quick sort

pivot

single elements

recursively process 
this sublists

NOTE: it is not great idea to pick the first element as pivot!!!



Quick sort

The algorithm makes use of the following methods:

1. pivot : gets the list, a start and end index, sets the first element as pivot and reorders all 
the elements in the list from start to end in such a way that all the elements to the left of 
the pivot (i.e. having index lower) are smaller than the pivot and all the elements to the 
right (i.e. with index higher) are bigger than the pivot. The function returns the index of 
the pivot;

2. recursiveQuickSort: gets an unordered (sub)list, with start and end positions, finds the 
pivot and recursively applies the same procedure to the sublists to the left and right of 
the pivot (if sublist has size > 1);

3. quickSort: gets an unordered list and applies the recursive quick sort procedure to it.



Pivot method

9 96 1 5 87 3

Pivot partitions the list in two: lower than 6 and higher than 6 
Pivot called on this list:

Two indexes: 
i goes through all the elements
j always points to the last element 
smaller than pivot  



Pivot method

9 96 1 5 87 3

Pivot called on this list:

pivot: 6
j i

Two indexes: 
i goes through all the elements
j always points to the last element 
smaller than pivot  



Pivot method

9 96 1 5 87 3

Pivot called on this list:

pivot:6 
i

6 > 1 
increment j
swap L[i], L[j]

j

i is incremented at all iterations



Pivot method

9 96 1 5 87 3

Pivot called on this list:

pivot:6 

j
i

6 > 5 
increment j
swap L[i], L[j]

i is incremented at all iterations



Pivot method

9 96 1 5 87 3

Pivot called on this list:

pivot:6 
j i

6 < 9 
do nothing

i is incremented at all iterations



Pivot method

9 96 1 5 87 3

Pivot called on this list:

pivot:6 
j i

6 < 7 
do nothing

i is incremented at all iterations



Pivot method

9 96 1 5 87 3

Pivot called on this list:

pivot:6 
j i

6 > 3 
increment j j always points to the last 

element smaller than pivot  

i is incremented at all iterations



Pivot method

9 96 1 5 87 3

Pivot called on this list:

pivot:6 
j i

6 > 3 
increment j
swap L[i],L[j]

3 96 1 5 87 9

j i

j always points to the last 
element smaller than pivot   

i is incremented at all iterations



Pivot method

Pivot called on this list:

pivot:6 

6 < 9 
do nothing

j i

3 96 1 5 87 9

i is incremented at all iterations



Pivot method

Pivot called on this list:

pivot:6 

6 < 8 
do nothing

j i

3 96 1 5 87 9

i is incremented at all iterations



Pivot method

Pivot called on this list:

pivot:6 
j i

6 < 9 
do nothing
END!
swap L[0], L[j]
return j

3 96 1 5 87 9

6 93 1 5 87 9

i is incremented at all iterations



Quick sort: the code



Quick sort: complexity

[it is only one for loop ]

worst case, when list is 
already sorted 
(theorem not seen)

Pick pivot as random 
value to heuristically 
reduce the probability 
of worst case!



Sorting methods: based on comparisons (?!?)

common feature 
of all methods 
seen so far



Counting Sort: NOT based on comparisons

Assumption

The numbers to be sorted are included in a range [0 . . . k − 1]

Idea
● Build a list B with k entries, where B[i] contains the number of times 

that i is contained in A (B is a list of counters).

● Put back together the elements in A, using the counters in B 
(adding elements have value N > 0, N times)

Possible improvements
The interval might not be limited to [0 . . . k − 1]; any known interval
[i, j] can work. In such case, you must subtract i from each number.

First, find the minimum value and subtract all the other values to it 
(remembering to add them back at the end)

4 6 4 1 2 1

0 2 1 0 2 0 1

0 1 2 3 4 5 6
Counter

Input list

1 1 2 4 4 6

Sorted list



Counting Sort: code

4 6 4 1 2 1

0 2 1 0 2 0 1

0 1 2 3 4 5 6
Counter

Input list

1 1 2 4 4 6

Sorted list



Counting Sort: complexity

executed once for each 
element in A: θ(n)

Size of A: n

adds k zeros to B : θ(k)

Overall, complexity: θ(n + k)



Counting Sort: complexity

If

-

-

If k is



Counting Sort
This can be used to sort every object that can be associated to a sortable 
key (can use lists of objects)  



Exercise: Bubble Sort

Compare two consecutive 
elements, if the two are in 
inverted order swap them, 
move up one place and 
continue until you arrive at 
the end of the list.

Restart from the beginning 
and continue until no more 
swaps are needed.

[from wikipedia]



Exercise: Bubble Sort

Sketch of the code:

procedure BubbleSort(A:list)
  swapFlag ← true
  while swapFlag do
    swapFlag ← false
    for i ← 0 to length(A)-2  do
      if A[i] > A[i+1] then
        swap( A[i], A[i+1] )

        swapFlag ← true

Optimization: at the end of an 
iteration one element is placed in 
its final position (at the end of the 
list).

[from wikipedia]


