Scientific Programming:
Part B

Data structures 1

Luca Bianco - Academic Year 2019-20
luca.bianco@fmach.it
[credits: thanks to Prof. Alberto Montresor]

Introduction

Data

In programming languages, data are pieces of information that can be
assigned to variables (i.e. values that can be assigned to variables)

Abstract Data Type (ADT)

A mathematical model, defined by a collection of values and a set of
operations that can be performed on them.

Primitive Abstract Data Types

Primitive abstract data types that are provided directly by the language G T R TN

Specification vs. Implementation

Specification

The specification of a type of data is its “manual”. It is a description of the
data that does not provide details

Implementation

The actual code (with all the specific details) that realizes (i.e. implements)
the abstract data type

Example: Real numbers vs IEEE-754

L ““a real number is a value of a continuous quantity that can represent a distance along a line”’
e |EEE-754 is a standard that defines the format for the representation of floating point
numbers

Sometime they differ!
>>> 0.1+0.2
0.30000000000000004

https://en.wikipedia.org/wiki/Quantity

Data structures

Data structures

Data structures are collections of data, characterized more by the
organization of the data rather than the type of contained data.

How to describe data structures

e a systematic approach to organize the collection of data

e a set of operators that enable the manipulation of the structure

Data structures can be

e Linear: if the position of an element relative to the ones inserted
before/after does not change

e Static / Dynamic: depending on if the content or size can change

Data structures

Type Java C++ Python
: List, Queue, Deque list, forward_list | list
Sequences | pjnyedList, vector tuple
ArrayList, Stack, stack deque
ArrayDeque queue, deque
_‘ Set set set, frozenset
Sets TreeSet, HashSet, unordered_set
LinkedHashSet
e R Map map dict
Dictionaries | gagnTree, HashMap, | unordered_map
LinkedHashMap
Trees = = -
Graphs _ _ _

Sequence: description

~ Sequence ~\
A dynamic data structure representing an "ordered" group of ele-
ments

@ The ordering is not defined by the content, but by the relative How the
position inside the sequence (first element, second element, data is
etc.) organized

e Values could appear more than once

e Example: 0.1, "alberto", 0.05, 0.1] is a sequence

[Operators

o It is possible to add / remove elements, by specifying their position
® S=51,82,...,8n What we
o the element s; is in position pos; — can do with
e It is possible to access directly some of the elements of the sequence the data

o the beginning and/or the end of the list
o having a reference to the position

e [t is possible to sequentially access all the other elements

Sequence: specification (prototype)

SEQUENCE

% Return True if the sequence is empty
boolean isEmpty()

% Returns the position of the first element
Pos head()

% Returns the position of the last element
Pos tail()

% Returns the position of the successor of p
Pos next(Pos p)

% Returns the position of the predecessor of p
Pos prev(Pos p)

Sequence: specification (prototype)

SEQUENCE (continue)

% Inserts element v of type OBJECT in position p.
% Returns the position of the new element
Pos insert(POS p, OBJECT v)

% Removes the element contained in position p.

% Returns the position of the successor of p, which % becomes successor of
the predecessor of p

Pos remove(P0S p)

% Reads the element contained in position p
OBJECT read(POSs p)

% Writes the element v of type OBJECT in position p
write(POS p, OBJECT v)

To build our “Sequence” data structure

SEQUENCE (continue) snpEntry[7].split(

% Inserts element v of type OBJECT in position p. ! o i

iy range(©0,len(info))
% Returns the position of the new element if(info[i].find(infoEl+"=")>-1):
Pos insert(POs p, OBJECT v) found = i
% Removes the element contained in position p. if(found len(info)-1):
% Returns the position of the successor of p, which % becomes successor of p”:tl): annot: kindfdeldis = dnioEL

exit(
the predecessor of p
Pos remove(Pos p) oat (info[found]
nin(v,1-v)

% Reads the element contained in position p (maf<= val):

OBJECT read(Pos p)

% Writes the element v of type OBJECT in position p
write(POs p, OBJECT v)

checkMaxMissingGen(snpEntry,infoEl,val):
info = snpEntry[7].split()

“specifications” “implementation”
method prototype
ADT Python code

Sequence: implementation (sketch)

#insert inserts the element obj in position pos
#or at the end

def init (self): « def insert(self, pos, obj):

class mySequence:

#the sequence is implemented as a list if pos <len(self. data):
self. Uata = {] self. data.insert(pos, obj)

#isEmpty returns True if sequence is empty, false otherwise return pos
def isEmpty(self): else:
return len(self. data) == #Not necessary! Already done by list's insert!!!

self. data.append(obj)

#head returns the position of the first element
£ return len(self. data) -1

def head(self):

if not self.isEmpty(): #remove removes the element in position pos
feturn 0 #(1if it exists in the sequence) and returns the index
else: #of the element that now follows the predecessor of pos

return None

#tail returns the position of the last element def remove(self, pos):

def tail(self): #T0DO
if not self.isEmpty(): pass
return len(self. data) -1
dse,’.etum Nlone #read returns the element in position pos (if
#next returns the position of the successor of element #it exists) or None
#in position pos def read(self, pos):
def next(self, pos): #TODO

if pos <len(self. data)-1:

return pos +1 pass
else: 3 3 . . 3 3
return None #write changes the object in position pos to new obj
" " o - _— » dot e 2 #if pos is a valid position
prev returns e position o e predecessor| or etemen : N
% pociiion bos def write(self,pos,new obj):
def prev(self, pos): #T0DO
if pos > 0 and pos < len(self. data): pass
return pos - 1
elsel’_etum Hone #converts the data structure into a string
- S - S def str_ (self):

return str(self. data)

Set: description

— Set N

A dynamic, non-linear data structure that stores an unordered collection
of values without repetitions.

o We can consider a total order between elements as the order
defined over their abstract data type, if present.

. y,
- ~\
Operators
\ J
e Basic operators: e Set operators
e insert e union
o delete e intersection
e contains o difference

@ [terators:

e Sorting operators
e for x in S:

e Maximum
e Minimum

Set: abstract data type

SET

% Returns the size of the set
int len()

% Returns True if z belongs to the set; Python: x in S
boolean contains(OBJECT z)

% Inserts z in the set, if not already present

add(OBJECT x)

% Removes x from the set, if present

discard(OBJECT)

% Returns a new set which is the union of A and B

SET union(SET A, SET B)

% Returns a new set which is the intersection of A and B
SET intersection(SET A, SET B)

% Returns a new set which is the difference of A and B
SET difference(SET A, SET B)

SET

Set: implementation (exercise) ™=

% Returns True if = belongs to the set; Python: x in S

class MySet: boolean contains(OBJECT)
def init (self, elements): % Inserts z in the set, if not already present
#HOW are we gonna implement the set? add(OBJECT x)
#5hall we use a list, a dictionary? % Removes z from the set, if present

pass discard(OBJECT)
#let's specify the special operator for len % Returns a new set which is the union of A and B
def len (self): SET union(SET A, SET B)

6555 o % Returns a new set which is the intersection of A and B
SET intersection(SET A, SET B)
#this is the special operator for in

: % Returns a new set which is the difference of A and B
def contains (self, element): 4

SET difference(SET A, SET B)

pass
#we do not redefine add because that is for S1 + S2
#where S1 and S2 are sets
def add(self,element):

pass

def discard(self,element):
pass

def iterator(self):
pass

def str (self):
pass

def union(self, other):
pass

def intersection(self, other):
pass

def difference(self, other):
pass

Dictionary

-~ Dictionary
Abstract data structure that represents the mathematical concept
of partial function R : D — C, or key-value association

e Set D is the domain (elements called keys)

e Set C is the codomain (elements called values)
\

-
Operators
\

@ Lookup the value associated to a particular key, if present, None
otherwise

e Insert a new key-value association, deleting potential association
that are already present for the same key

@ Remove an existing key-value association

Dictionary: ADT

DICTIONARY

% Returns the value associated to key k, if present; returns none
otherwise
OBJECT lookup(OBJECT k)

% Associates value v to key k
insert(OBJECT k, OBJECT v)

% Removes the association of key k
remove(OBJECT k)

Linked lists
List (Linked List) N

A sequence of memory objects, containing arbitrary data and 1-2
pointers to the next element and/or the previous one

(Note)

e Contiguity in the list # contiguity in memory

e All the operations require O(1), but in some cases you need a lot of
single operations to complete an action

(Possible implementations)

e Bidirectional / Monodirectional
e With sentinel / Without sentinel
e Circular / Non-circular

Linked lists (types)

L Vi > \/o > \/3 > =00 —ly | il
Monodirectional

L sinil|vi| 1 [ve] =1 [va| < — * 1= [va|nil
Bidirectional

L g mme om0 oA

t

Bidirectional, circular

L > V4 Vo | =T " * * —*Vy|nil

Monodirectional, with sentinel

Linked lists are dynamic collections of objects and pointers (either 1 or 2) that point to the next element in the
list or to both the next and previous element in the list.

Example: monodirectional list in python

Monodirectional list Node
%adds a node n to the Monodirectional list DATA | next
placing it as the head 1
add (node n)

%searches a node n and returns True if it is Alistis a sequence

found, false otherwise of nO(_?les,. the first

boolean search (node n) ﬁfW:K*”Sthe
ead.

%removes a node n if it is found, does nothing | t

otherwise ements are

added at the

beginning and

become the new

remove (node n)

%produces the string representation of the
Monodirectional list as: el1 ->el2 -> ... -> eln head
__str_ ()

Example: monodirectional list in python

Add one element
(d_new)

None

d_new

next

head

None

Monodirectional list in python: add

Add one element
(d_new)

head

d_new

next

None

Monodirectional list in python: remove

Remove one element
(d2)

head

None

-

d2

next

Monodirectional list in python: remove

Remove one element
(d2)

head

None

—

d2

next

class MonodirList: o head None

def init (self):
Th e COd e self. head = None #None is the sentinel!

def add(self,node):
if type(node) != Node:

raise TypeError("node is not of type Node") next
wun . : nun else:
node.set next(self. hea
Can place this in Node.py de.set_next(self. head)
class Nodeg . self. head = node if _name_ == " main_ ":
def init (self, data):] ML = MonodirList()
self. data = data - Sea““éself'h{te“‘g" - for i in range(1,50,10):
— o current = self. hea n = Node(i
Self._next —_ None found = False ML.add(n§)
whi‘l.g current != None and not_found: print(ML)
def get data(self): EE cuRbeueaipt datel) a8 fite: print("Adding 111")
return self. data ound = frue new n = Node(111)
o s current = current.get next() L oudinen 1)
o -get_| print("Adding 27")
def set data(self, newdata): return found new n2 = Node(27)
self. data = newdata d : ML.add(new_n2)
—_ ef remove(self,item): print (ML)
current = self._head print("Removing 1")
def get next(self): prev = None
&) ML.remove(1)
return self. next found = False print(ML)
— while not found and current != None: print("Removing 1")
if current.get data() == item: ML. remove (1)
def set next(self, node): found = True She(n ; "
G ise: print("Removing 111")
self. next = node erse. . print("Removing 31")
prey = CUrren ML.remove(111)
. current = current.get next() ML. remove(31)
d : if f(_)und: ! prlnt(ML)
ef str_ (self): if prev == None:
return str(self. data) 3 self. head = current.get next()
— else:
. prev.set next(current.get next())
#for sorting 41 531 591 AT 54
def 1t (self, other): def __fstrﬁ(se}.f)é - Adding 111
if self. head != None: ;
% < 3 — Adding 27
return self. data < other. data dta = str(self. head.get data()) 3 _>9111 R ——
cur_el = self. head.get next() Removing 1
while cur_el != None: 27 -> 111 -> 41 -> 31 -> 21 -> 11
dta += " -> " + str(cur_el.get data()) Removing 1

cur_el = cur_el.get next() ;
return str(dta) Egmgﬁgg %il

else: . 27 -> 41 -> 21 -> 11
return

Monodirectional list in python: len?

How could we implement the len() operator (i.e. __len__)? None
head
d_new | next

Go from first to last element and sum

Monodirectional list in python: __len__()?

None

How could we implement the len() operator (i.e. __len__)?
head

The code: l
m next

def len (self):
current = self. head
length = 0
while current != None:
length += 1
current = current.get next()
return length

Complexity is O(n).
Is it possible to improve this?

Monodirectional list in python: __len__()?

Faster __len__|).
Idea: store and update the number of elements present

The code:
class MonodirList:

def init (self): def remove(self,item):
self. head = None #None is the sentinel! current = self. head
self. len =0 prev = None

found = False
def add(self,node): while not found and current != None:
if current.get data() == item:

if type(node) != Node:

raise TypeError("node is not of type Node") found = True

else: else:
node.set next(self. head) prev = current
self. head = node current = current.get next()
self. len +=1 if found: -
if prev == None:
self. head = current.get next()
else:
def len (self): prev.set next(current.get next())
self. len -=1

return self. len

Exercise: How about O(1) min/max

Complexity is O(1). vzl;es?dHint: change again __init__,
add, and remove.

Bidirectional linked list

None None

Each node now has:
e the data
® a prev pointer
® a next pointer

prev pointer of the first
element in the list is
None

next pointer of the last
element is None

Bidirectional linked list

Each node now has:

None None
e the data
® 3 prev pointer
e anext pointer Head

prev pointer of the first
element in the list is
None

Tail

next pointer of the last
element is None

The list can have a
head and tail pointer

Bidirectional linked list: append

None None
Each node now has: Head
e the data
® a prev pointer I
® a next pointer
Tail
Append: add a node as
next of the current tail None

None

f

dnew | prev | next ‘

Bidirectional linked list; insert at/remove

None

None

Each node now has:
e the data
® 3 prev pointer
® a next pointer

Insert at 2 | dnewl prev I next ’

Insert at 2
Insert at/remove : First loop until you reach 2 (cur = cur.get_next())
reach the correct

position and update the
next/prev pointers of
the three involved
nodes

None

None

Y
dnew | prev | next l

Head I Tail

Dynamic Vectors

-~ Lists in Python implemented through dynamic vectors

e A vector of a given size (initial capacity) is allocated

e When inserting an element before the end, all elements have
to be moved - cost O(n)

e When inserting an element at the end (append), the cost is
O(1) (just writing the element at first available slot)

Problem:
e It is not known how many elements have to be stored
e The initial capacity could be insufficient

Solution:

e A new (larger) vector is allocated, the content is copied in the new
vector, the old vector is released

Dynamic Vectors

- Lists in Python implemented through dynamic vectors

e A vector of a given size (initial capacity) is allocated

@ When inserting an element before the end, all elements have
to be moved - cost O(n)

e When inserting an element at the end (append), the cost is
O(1) (just writing the element at first available slot)

Problem:

e It is not known how many elements have to be stored

@ The initial capacity could be insufficient [x[v]z]w]
Solution:

e A new (larger) vector is allocated, the content is copied in the new
vector, the old vector is released

Dynamic Vectors

- Lists in Python implemented through dynamic vectors

e A vector of a given size (initial capacity) is allocated

@ When inserting an element before the end, all elements have
to be moved - cost O(n)

e When inserting an element at the end (append), the cost is
O(1) (just writing the element at first available slot)

Problem:
e It is not known how many elements have to be stored
e The initial capacity could be insufficient ELI—:
Solution:

e A new (larger) vector is allocated, the content is copied in the new
vector, the old vector is released

Dynamic Vectors

-~ Lists in Python implemented through dynamic vectors

e A vector of a given size (initial capacity) is allocated

@ When inserting an element before the end, all elements have
to be moved - cost O(n)

e When inserting an element at the end (append), the cost is
O(1) (just writing the element at first available slot)

Problem:
e It is not known how many elements have to be stored
e The initial capacity could be insufficient ELI—:
Solution:

e A new (larger) vector is allocated, the content is copied in the new
vector, the old vector is released

Dynamic Vectors

e A vector of a given size (initial capacity) is allocated

to be moved - cost O(n)

O(1) (just writing the element at first available slot)
\.

-~ Lists in Python implemented through dynamic vectors

@ When inserting an element before the end, all elements have

e When inserting an element at the end (append), the cost is

Problem:
e It is not known how many elements have to be stored
e The initial capacity could be insufficient

Solution:

e A new (larger) vector is allocated, the content is copied in the new

vector, the old vector is released

Dynamic Vectors

Question \
Which is the best approach? '
- Approach 1 “
If the old vector has size n, allocate a new vector of size dn. For ,
doubling
example, d = 2
\ J
~ Approach 2 \
increment

If the old vector has size n, allocate a new vector of size n+d, where

d is a constant. For example, d = 16
3 J

Dynamic Vectors: Amortized cost (doubling)

Actual cost of an append() operation:
i JkeZf:i=2"+1

1 otherwise

C; =

Assumptions:
o Initial capacity: 1
o Writing cost: ©(1)

ex. 3 elements in. Append now: 1 operation

n | cost

B

2 | 142%=2

3 1+21=3\
4|1
5|11+22=5

6 | 1

711

8 |

9 |1+2°=9 |
10 |1

11 |

12 |1

13 |1

14 |1

15 | 1

16 | 1

17 | 1+2* =17

Amortized analysis
tells how the average
of the performance
of a set of operations
on a large data set
scales.

We consider a block
of operations.

Doubling

Dynamic Vectors: Amortized cost (doubling)

Actual cost of an append() operation:

i JkeZi:i=2F+1
C; =

1 otherwise

Assumptions:
o Initial capacity: 1
o Writing cost: ©(1)

ex. 4 elements in.

n | cost

B

2 | 142%=2

3 1+21=3\
4|1
5|11+22=5

6 | 1

711

8 |1

9 |1+2°=9 |
10 |1

11 |

12 |1

13 |1

14 |1

15 | 1

16 | 1

17 | 1+2* =17

Amortized analysis
tells how the average
of the performance
of a set of operations
on a large data set
scales.

We consider a block
of operations.

Doubling

Dynamic Vectors: Amortized cost (doubling)

Actual cost of an append() operation:
i JkeZf:i=2"+1
G
’ 1 otherwise
Assumptions:

o Initial capacity: 1
o Writing cost: ©(1)

eX. 4 elements in. Append now: cost 1+ 4 allocations

n | cost

B

2 | 142%=2

3 1+21=3\
4|1
5|11+22=5

6 | 1

711

8 |

9 |1+2°=9 |
10 |1

11 |

12 |1

13 |1

14 |1

15 | 1

16 | 1

17 | 1+2* =17

Amortized analysis
tells how the average
of the performance
of a set of operations
on a large data set
scales.

We consider a block
of operations.

Doubling

Dynamic Vectors: Amortized cost (doubling)

Actual cost of an append() operation:
i JkeZf:i=2"+1

1 otherwise

C; =

Assumptions:
o Initial capacity: 1
o Writing cost: ©(1)

eX. 4 elements in. Append now: cost 1+ 4 allocations

IR | [

n | cost

B

2 | 142%=2

3 1+21=3\
4|1
5|11+22=5

6 | 1

711

8 |

9 |1+2°=9 |
10 |1

11 |

12 |1

13 |1

14 |1

15 | 1

16 | 1

17 | 1+2* =17

Amortized analysis
tells how the average
of the performance
of a set of operations
on a large data set
scales.

We consider a block
of operations.

Doubling

Dynamic Vectors: Amortized cost (doubling)

Amortized analysis
tells how the average

Actual cost of n operations append(): Amortized cost of a single of the performance
& append(): of a set of operations
T(n) = Z Ci O(n) on a large data set
i=1 T(n)/n= —— o(1) scales.
[logn]
= J We consider a block
L Z% 2 of operations.
J:

=n+ 2|_lognj+1 —1
S n -+ 2logn+1 -1

=n+2n—1=0(n) 5
2i=2n+l_l
2

Dynamic Vectors: Amortized cost (increment)

Actual cost of an append() operation:

1 altrimenti

Ciz{z (imodd) =1

Assumptions

@ Increment: d
o Initial size: d
o Writing cost: ©(1)

Example

e d=14

n | cost

11

2|1

311

4 |1
5114+d=5
6|1 AN
711

8 |1

91 142d=9
10 | 1

11 |1

125 | &

13 | 1+3d=13 1
14 |1

15 | 1

16 | 1

17 | 1+4d =17

Amortized analysis
tells how the average
of the performance
of a set of operations
on a large data set
scales.

We consider a block
of operations.

Increment

Dynamic Vectors: Amortized cost (increment)

Amortized analysis

Actual cost of n operations append(): Amortized cost of a single tells how the average
e append(): of the performance
T(n) = Z Ci O(n?) of a set of operations
i=1 T(n)/n= . O(n) on a large data set
|n/d] scales.
=n+ d-j
Zl 4 We consider a block
ge= of operations.
[n/d|
sl .,
Jj=1
4+ glln/dl + D|n/d]
2 \
(n/d+1)n & _n(n+)

= O(n?) o'=7

=T 5

Dynamic vectors: growth factor

Language | Data structure | Expansion factor

GNU C++ | std::vector 2.0

Microsoft VC++ 2003 vector 1.5
Python 1ist 1.125

Oracle Java ArrayList 2.0
OpenSDK Java ArrayList 1.5

Performance of Python’s data structures

The choice of the data structure has implications on the performances

It is important to know the properties of built-in structures to use them properly! <j

Performance of Python’s lists

lists are dynamic
vectors!

Operator Worst case Worst case
amortized
L.copy() Copy O(n) O(n)
L.append(x) Append O(n) 0(1)
L.insert(i,x) Insert O(n) O(n)
L.remove (x) Remove O(n) O(n)
LE3) Index O(1) 0(1)
for x in L [terator O(n) O(n)
L[i:i+k] Slicing O(k) O(k)
L.extend(s) Extend O(k) O(n + k)
x in L Contains O(n) O(n)
min(L), max(L) Min, Max O(n) O(n)
len(L) Get length O(1) 0(1)

Reality check

import time

from collections import deque

N = 750
L=1[]
start = time.time()

for i in range(N):

for j in range(N):
L.insert(0, i) - o(n)
end = time.time()
print("[list: insert] {:.2f}s elapsed".format(end-start))
L=[1
start = time.time()
for i in range(N):

for j in range(N):
L.append(i) - 0(1)
end = time.time()
print("[list: append] {:.2f}s elapsed".format(end-start))

start = time.time()

for i in range(len(L)):
L.pop(0) - O(n)

end = time.time()
print("[list: remove] {:.2f}s elapsed".format(end-start))

[list: insert] 88.90s elapsed
[list: append] 0.04s elapsed
[list: remove] 30.33s elapsed

Operator ‘Worst case ‘Worst case
amortized
L. copy () Copy O(n) O(n)
L.append (x) Append O(n) O(1)
L.insert(i,x) Insert O(n) O(n)
L.remove (x) Remove O(n) O(n)
L[i] Index o(1) o(1)
for x in L Iterator O(n) O(n)
L[i:i+k] Slicing O(k) O(k)
L.extend(s) Extend O(k) O(n+k)
x in L Contains O(n) O(n)
min(L), max(L) Min, Max O(n) O(n)
len(L) Get length O(1) O(1)
D = deque()
start = time.time()

for i in range(N):
for j in range(N):
D.insert(0, i)

<= o)
end = time.time()

print("[deque: insert] {:.2f}s elapsed".format(end-start))
D = deque()
start = time.time()
for i in range(N)
for j in range(N)
D.append(i
end = time.time()

- o)

print("[deque: append] {:.2f}s elapsed”.format(end-start))

start = time.time()

for i in range(len(D)):
D.popleft() -
end = time.time() CD 1)

print("[deque: remove] {:.2f}s elapsed".format(end-start))

[deque: insert] 0.06s elabsed
[deque: append] 0.04s elapsed
[deque: remove] 0.04s elapsed

collections.deque

https://docs.python.org/3.7/library/collections.html#collections.deque

https://docs.python.org/3.7/library/collections.html#collections.deque

