
Scientific Programming:
Part B

Lecture 5

Luca Bianco - Academic Year 2019-20
luca.bianco@fmach.it
[credits: thanks to Prof. Alberto Montresor]

Dictionary: ADT

Possible implementations of a dictionary

Hash table: definitions

Luca Bianco

David Leoni

Massimiliano Luca

Key Function Hash table

0

1

3

60

...

...

116

m-1

...

Hash table: collisions

Luca Bianco

David Leoni

Massimiliano Luca

Key Function Hash table

0

1

3

60

...

...

116

m-1

...
Andrea Passerini

collision

There are
several
ways to deal
with these...

Direct access tables

Example: days of the year

Perfect hash function

Hash functions

we will have to deal with collisions anyway. More on this later...

Hash functions

Hash functions: possible implementations

Hash functions: possible implementations (the code)

ord → ascii
representation of
a character

Replace the b
that stands for
binary!

Hash function implementation

Luca 1,282,761,569 mod 383 Index: 351
David 293,692,926,308 mod 383 Index: 345
Massimiliano 23,948,156,761,864,131,868,341,923,439 mod 383 Index: 208
Andrea 71,942,387,426,657 mod 383 Index: 111
Alberto 18,415,043,350,787,183 mod 383 Index: 221
Alan Turing 39,545,995,566,905,718,680,940,135 mod 383 Index: 314

Conflicts: separate chaining

Separate chaining: complexity

Separate chaining: complexity

Separate chaining: complexity

Hash table: rules for hashing objects

[https://www.asmeurer.com/blog/posts/what-happens-when-you-mess-with-hashing-in-python/]

Hash table: sample code (m = 11)

[[('Andrea', 15)], [('Luca', 27), ('David', 5), ('Alberto', 12)], [], [], [('Alan', 1)], [],
[('Massimiliano', 12)], [], [], [], []]

Luca -> 27
Thomas -> None

[[('Andrea', 15)], [('David', 5), ('Alberto', 12)], [], [], [('Alan', 1)], [],
[('Massimiliano', 12)], [], [], [], []]

SOME CONFLICTS!

pair to deal
with collisions

Hash table: sample code (m = 17)

[[], [], [], [], [], [], [('Alan', 1)], [], [], [('Andrea', 15)], [], [], [('David', 5)],
[('Massimiliano', 12)], [], [('Luca', 27)], [('Alberto', 12)]]
Luca -> 27
Thomas -> None
[[], [], [], [], [], [], [('Alan', 1)], [], [], [('Andrea', 15)], [], [], [('David', 5)],
[('Massimiliano', 12)], [], [], [('Alberto', 12)]]

NO CONFLICTS!

In python...

Python built-in: set

Python built-in: dictionary

Stack: Last in, first out queue

Stack: Last in, first out queue

Stack: Last in, first out queue

Stack: Last in, first out queue

my_func(80)

Stack: Last in, first out queue

my_func(20)
my_func(80)

Stack: Last in, first out queue

my_func(20)
my_func(80)

my_func(5)

Stack: Last in, first out queue

my_func(20)
my_func(80)

my_func(5)
my_func(1)

Stack: Last in, first out queue

my_func(20)
my_func(80)

my_func(5)
my_func(1) 1

Stack: Last in, first out queue

my_func(20)
my_func(80)

my_func(5) 6

Stack: Last in, first out queue

my_func(20)
my_func(80)

26

Stack: Last in, first out queue

my_func(80) 106

Stack: Last in, first out queue

106

Stack: Last in, first out queue

Note: the stack has finite

size!

Stack: implementation

could have used a deque,
linked list,...

Stack: uses

Stack: exercise

Desired output

{{([][])}()} balanced: True
[{()] balanced: False
{[(())][{[]}]} balanced: True
{[(())][{[]}] balanced: False

Ideas on how to implement par_checker using
a Stack?

Simplifying assumption: only characters allowed
in input are ”{ [()] }”

Possible solution:
Loop through the input string and...

● push opening parenthesis to stack
● when analyzing a closing parenthesis,

pop one element from the stack and
compare: if matching keep going, else
return False

Stack: exercise

Desired output

{{([][])}()} balanced: True
[{()] balanced: False
{[(())][{[]}]} balanced: True
{[(())][{[]}] balanced: False

Queue: First in, first out queue (FIFO)

Queue: example

Queue: uses and implementation

Queue: as a list (with deque)

Makes use of efficient deque object that provides ~ O(1) push/pop
https://docs.python.org/3.7/library/collections.html#collections.deque

Not very interesting implementation.

Just pay attention to the case when
the Queue is empty in top and
dequeue

Queue as a circular list

 tail

 tail

 tail

 tail

Queue as a circular list: example

Queue as a circular list: example

Queue as a circular list: example

Queue as a circular list: example

Queue as a circular list: example

Queue as a circular list: example

Queue as a circular list: example

skipping a few
typing steps...

Queue as a circular list: example

skipping a few
typing/reading
 steps...

Queue as a circular list: exercise

Implement the CircularQueue data structure

(without going to the next slide…)

Queue as a circular list: the code

Exercise 1

Consider the following code (where s is a list of n
elements). What is its complexity?

Exercise 1

Consider the following code (where s is a list of n
elements). What is its complexity?

strings are
immutable!

Exercise 2

Consider the following code (where s is a list of n
elements). What is its complexity?

Exercise 2

Consider the following code (where s is a list of n
elements). What is its complexity?

Exercise 3

Consider the following code (where s is a list of n
elements). What is its complexity?

Exercise 3

Consider the following code (where s is a list of n
elements). What is its complexity?

Note that: “”.join(res) has
complexity O(n)

Exercise 4

Consider the following code (where L is a list of n
elements). What is its complexity?

Exercise 4

Consider the following code (where L is a list of n
elements). What is its complexity?

Exercise 5

Consider the following code (where L is a list of n
elements). What is its complexity?

Exercise 5

Consider the following code (where L is a list of n
elements). What is its complexity?

