
Scientific Programming:
Part B

Trees

Luca Bianco - Academic Year 2019-20
luca.bianco@fmach.it 
[credits: thanks to Prof. Alberto Montresor]



Tree: examples 



Tree: examples 



Tree: examples 



Tree: examples 



Definitions

Trees are data structures 
composed of two elements: 
nodes and edges. 

Nodes represent things and 
edges represent relationships 
(typically non-symmetric) among 
two nodes.



Definitions

Facts

● One node called the root is the top level of the tree and is connected to one or more other nodes;

● If the root is connected to another node by means of one edge, then it is said to be the parent of the 
node (and that node is the child of the root);

● Any node can be parent of one or more other nodes, the only important thing is that all nodes have 
only one parent;

● The root is the only exception as it does not have any parent. Some nodes do not have children 
and they are called leaves;



Recursive definition



Terminology



Terminology - 2



Binary tree



Binary tree: Node

When implementing a tree we can define 
a node object and then a tree object 
that stores nodes.

We will use the more compact way which 
is to use the recursive definition of a 
tree.



Binary tree: ADT



Binary tree: the code



A sample tree...



A sample tree...



A sample tree...



A sample tree...

Exercise. write a print function that gets the root 
node and prints the tree:



A sample tree... Exercise. write a print function that gets the root 
node and prints the tree:

Tabs depend 
on depth



A sample tree...

OUTPUT
Root (r)-> 2
Root (l)-> 1

1 (r)-> 5b
1 (l)-> 5a

5b (r)-> 5c
2 (l)-> 3

3 (r)-> 5
3 (l)-> 4

5 (l)-> child of 5



Tree traversals

To store all unfinished calls to DFS(node)



Tree traversals

Preorder:
Root

Recursively
1. visit Root
2. visit left
3. visit right 

To store all unfinished calls to DFS(node)



Tree traversals

Preorder:
Root
1

Recursively
1. visit Root
2. visit left
3. visit right 

Stack: (5c right of 5b!)
1
Root



Tree traversals

Preorder:
Root
1
5a

Recursively
1. visit Root
2. visit left
3. visit right 

Stack: (5c right of 5b!)
5a
1
Root



Tree traversals

Preorder:
Root
1
5a

Recursively
1. visit Root
2. visit left
3. visit right 

Stack: (5c right of 5b!)
1
Root



Tree traversals

Preorder:
Root
1
5a
5b

Recursively
1. visit Root
2. visit left
3. visit right 

Stack: (5c right of 5b!)
5b
1
Root



Tree traversals

Preorder:
Root
1
5a
5b
5c

Recursively
1. visit Root
2. visit left
3. visit right 

Stack: (5c right of 5b!)
5c
5b
1
Root



Tree traversals

Preorder:
Root
1
5a
5b
5c

Recursively
1. visit Root
2. visit left
3. visit right 

Stack: (5c right of 5b!)
5b
1
Root



Tree traversals

Preorder:
Root
1
5a
5b
5c

Recursively
1. visit Root
2. visit left
3. visit right 

Stack: (5c right of 5b!)
1
Root



Tree traversals

Preorder:
Root
1
5a
5b
5c

Recursively
1. visit Root
2. visit left
3. visit right 

Stack: (5c right of 5b!)
Root



Tree traversals

Preorder:
Root
1
5a
5b
5c
2

Recursively
1. visit Root
2. visit left
3. visit right 

Stack: (5c right of 5b!)
2
Root



Tree traversals

Preorder:
Root
1
5a
5b
5c
2
3

Recursively
1. visit Root
2. visit left
3. visit right 

Stack: (5c right of 5b!)
3
2
Root



Tree traversals

Preorder:
Root
1
5a
5b
5c
2
3
4

Recursively
1. visit Root
2. visit left
3. visit right 

Stack: (5c right of 5b!)
4
3
2
Root



Tree traversals

Preorder:
Root
1
5a
5b
5c
2
3
4

Recursively
1. visit Root
2. visit left
3. visit right 

Stack: (5c right of 5b!)
3
2
Root



Tree traversals

Preorder:
Root
1
5a
5b
5c
2
3
4
5

Recursively
1. visit Root
2. visit left
3. visit right 

Stack: (5c right of 5b!)
5
3
2
Root



Tree traversals

Preorder:
Root
1
5a
5b
5c
2
3
4
5

Recursively
1. visit Root
2. visit left
3. visit right 

Stack: (5c right of 5b!)
3
2
Root



Tree traversals

Preorder:
Root
1
5a
5b
5c
2
3
4
5

Recursively
1. visit Root
2. visit left
3. visit right 

Stack: (5c right of 5b!)
2
Root



Tree traversals

Preorder:
Root
1
5a
5b
5c
2
3
4
5
6

Recursively
1. visit Root
2. visit left
3. visit right 

Stack: (5c right of 5b!)
6
2
Root



Tree traversals

Preorder:
Root
1
5a
5b
5c
2
3
4
5
6

Recursively
1. visit Root
2. visit left
3. visit right 

Stack: (5c right of 5b!)
2
Root



Tree traversals

Preorder:
Root
1
5a
5b
5c
2
3
4
5
6

Recursively
1. visit Root
2. visit left
3. visit right 

Stack: (5c right of 5b!)
Root



Tree traversals

Preorder:
Root
1
5a
5b
5c
2
3
4
5
6

Recursively
1. visit Root
2. visit left
3. visit right 

Stack: (5c right of 5b!)

empty! Done



Tree traversals

Inorder:Recursively
1. visit left
2. visit Root
3. visit right 

Stack: (5c right of 5b!)
Root



Tree traversals

Inorder:Recursively
1. visit left
2. visit Root
3. visit right 

Stack: (5c right of 5b!)
1
Root



Tree traversals

Inorder:
5a

Recursively
1. visit left
2. visit Root
3. visit right 

Stack: (5c right of 5b!)
5a
1
Root



Tree traversals

Inorder:
5a

Recursively
1. visit left
2. visit Root
3. visit right 

Stack: (5c right of 5b!)
1
Root



Tree traversals

Inorder:
5a
1

Recursively
1. visit left
2. visit Root
3. visit right 

Stack: (5c right of 5b!)
1
Root



Tree traversals

Inorder:
5a
1

Recursively
1. visit left
2. visit Root
3. visit right 

Stack: (5c right of 5b!)
5b
1
Root



Tree traversals

Inorder:
5a
1
5b

Recursively
1. visit left
2. visit Root
3. visit right 

Stack: (5c right of 5b!)
5b
1
Root



Tree traversals

Inorder:
5a
1
5b
5c

Recursively
1. visit left
2. visit Root
3. visit right 

Stack: (5c right of 5b!)
5c
5b
1
Root



Tree traversals

Inorder:
5a
1
5b
5c

Recursively
1. visit left
2. visit Root
3. visit right 

Stack: (5c right of 5b!)
5b
1
Root



Tree traversals

Inorder:
5a
1
5b
5c

Recursively
1. visit left
2. visit Root
3. visit right 

Stack: (5c right of 5b!)
1
Root



Tree traversals

Inorder:
5a
1
5b
5c

Recursively
1. visit left
2. visit Root
3. visit right 

Stack: (5c right of 5b!)
Root



Tree traversals

Inorder:
5a
1
5b
5c
Root

Recursively
1. visit left
2. visit Root
3. visit right 

Stack: (5c right of 5b!)
Root



Tree traversals

Inorder:
5a
1
5b
5c
Root

Recursively
1. visit left
2. visit Root
3. visit right 

Stack: (5c right of 5b!)
2
Root



Tree traversals

Inorder:
5a
1
5b
5c
Root

Recursively
1. visit left
2. visit Root
3. visit right 

Stack: (5c right of 5b!)
3
2
Root



Tree traversals

Inorder:
5a
1
5b
5c
Root
4

Recursively
1. visit left
2. visit Root
3. visit right 

Stack: (5c right of 5b!)
4
3
2
Root



Tree traversals

Inorder:
5a
1
5b
5c
Root
4

Recursively
1. visit left
2. visit Root
3. visit right 

Stack: (5c right of 5b!)
3
2
Root



Tree traversals

Inorder:
5a
1
5b
5c
Root
4
3

Recursively
1. visit left
2. visit Root
3. visit right 

Stack: (5c right of 5b!)
3
2
Root



Tree traversals

Inorder:
5a
1
5b
5c
Root
4
3
5

Recursively
1. visit left
2. visit Root
3. visit right 

Stack: (5c right of 5b!)
5
3
2
Root



Tree traversals

Inorder:
5a
1
5b
5c
Root
4
3
5

Recursively
1. visit left
2. visit Root
3. visit right 

Stack: (5c right of 5b!)
3
2
Root



Tree traversals

Inorder:
5a
1
5b
5c
Root
4
3
5

Recursively
1. visit left
2. visit Root
3. visit right 

Stack: (5c right of 5b!)
2
Root



Tree traversals

Inorder:
5a
1
5b
5c
Root
4
3
5
2

Recursively
1. visit left
2. visit Root
3. visit right 

Stack: (5c right of 5b!)
2
Root



Tree traversals

Inorder:
5a
1
5b
5c
Root
4
3
5
2
6

Recursively
1. visit left
2. visit Root
3. visit right 

Stack: (5c right of 5b!)
6
2
Root



Tree traversals

Inorder:
5a
1
5b
5c
Root
4
3
5
2
6

Recursively
1. visit left
2. visit Root
3. visit right 

Stack: (5c right of 5b!)
2
Root



Tree traversals

Inorder:
5a
1
5b
5c
Root
4
3
5
2
6

Recursively
1. visit left
2. visit Root
3. visit right 

Stack: (5c right of 5b!)
Root



Tree traversals

Inorder:
5a
1
5b
5c
Root
4
3
5
2
6

Recursively
1. visit left
2. visit Root
3. visit right 

Stack: (5c right of 5b!)

empty. Done!



Tree traversals

Postorder:
5a
5c (right of 5b)
5b
1
4
5
3
6
2
Root

Recursively
1. visit left
2. visit right
3. visit Root

 

Stack: Exercise!



DFS: the code

Preorder:
Root
1
5a
5b
5c
2
3
4
5
6

visit means “print”

Inorder:
5a
1
5b
5c
Root
4
3
5
2
6

Postorder:
5a
5c
5b
1
4
5
3
6
2
Root

implicit 
stack



Tree traversals



Tree traversals

Visit order

0. Add root to the queue Q

Recursively
1. get node from Q
2. visit the node
3. add all children to Q

 

Queue
Root



Tree traversals

Visit order
Root

0. Add root to the queue Q

Recursively
1. get node from Q
2. visit the node
3. add all children to Q

 

Queue
1 , 2



Tree traversals

Visit order
Root
1

0. Add root to the queue Q

Recursively
1. get node from Q
2. visit the node
3. add all children to Q

 

Queue
2, 5a, 5b



Tree traversals

Visit order
Root
1
2

0. Add root to the queue Q

Recursively
1. get node from Q
2. visit the node
3. add all children to Q

 

Queue
5a, 5b, 3, 6



Tree traversals

Visit order
Root
1
2
5a

0. Add root to the queue Q

Recursively
1. get node from Q
2. visit the node
3. add all children to Q

 

Queue
5b, 3, 6



Tree traversals

Visit order
Root
1
2
5a
5b

0. Add root to the queue Q

Recursively
1. get node from Q
2. visit the node
3. add all children to Q

 

Queue
3, 6, 5c



Tree traversals

Visit order
Root
1
2
5a
5b
3

0. Add root to the queue Q

Recursively
1. get node from Q
2. visit the node
3. add all children to Q

 

Queue
6, 5c, 4, 5



Tree traversals

Visit order
Root
1
2
5a
5b
3
6

0. Add root to the queue Q

Recursively
1. get node from Q
2. visit the node
3. add all children to Q

 

Queue
5c, 4, 5



Tree traversals

Visit order
Root
1
2
5a
5b
3
6
5c

0. Add root to the queue Q

Recursively
1. get node from Q
2. visit the node
3. add all children to Q

 

Queue
4, 5



Tree traversals

Visit order
Root
1
2
5a
5b
3
6
5c
4

0. Add root to the queue Q

Recursively
1. get node from Q
2. visit the node
3. add all children to Q

 

Queue
5



Tree traversals

Visit order
Root
1
2
5a
5b
3
6
5c
4
5

0. Add root to the queue Q

Recursively
1. get node from Q
2. visit the node
3. add all children to Q

 

Queue

Empty. Done



Tree traversals

Visit order
Root
1
2
5a
5b
3
6
5c
4
5

0. Add root to the queue Q

Recursively
1. get node from Q
2. visit the node
3. add all children to Q

 

Level
0
1
1
2
2
2
2
3
3
3



Tree traversals: BFS

BFS visit:
Root
1
2
5a
5b
3
6
5c
4
5



Tree traversals: complexity



Generic trees

Generic Trees are like binary trees, but each 
node can have more than 2 children. One 
possible implementation is that each node (that 
is a subtree in itself) has a value, a link to its 
parent and a list of children.

Another implementation is that each node has a 
value, a link to its parent, a link to its next 
sibling and a link to its first child.



Generic trees

Exercise!



Exercise

Root-Left-Right

Left-Right-Root

Left-Root-Right



Exercise

where I is on the right of D and H is on the left of I

Preorder visit
A
E
B
F
G
C
D
I
H

Inorder visit
B
E
G
F
C
A
D
H
I

Postorder visit
B
G
C
F
E
H
I
D
A



Exercises

Width: 3
Minimal height: 2
k = 2 → output: 3



Exercise: width

similar to BFS but we need to explicitly store the 
level...

Min Height and nodes at level k are similar...


