
Scientific Programming:
Part B

Graphs

Luca Bianco - Academic Year 2019-20
luca.bianco@fmach.it
[credits: thanks to Prof. Alberto Montresor]

Graphs: examples

http://www.kegg.jp/[From: Compeau et al, How to apply de Bruijn
graphs to genome assembly, Nature Biotech,2011]

Graphs: examples

[From: Compeau et al, How to apply de Bruijn
graphs to genome assembly, Nature Biotech,2011]

Graphs: examples

A 10 actor social network introduced by David
Krackhardt to illustrate: degree, betweenness,
centrality, closeness, etc. The traditional labeling is:
Andre=1, Beverley=2, Carol=3, Diane=4,
Ed=5, Fernando=6, Garth=7, Heather=8, Ike=9,
Jane=10.
[Social Network analysis for startups, "O'Reilly Media,
Inc.", 2011]

The London underground system

Graphs

Graphs

Relations represented by edges can be symmetric (e.g. sibling_of: if 𝑋 is sibling of 𝑌 then 𝑌 is sibling of 𝑋) and in this case the edges

are just lines rather than arrows. In this case the graph is directed. In case relationships are not symmetric (i.e. 𝑋→𝑌 does not imply

𝑌→𝑋) we put an arrow to indicate the direction of the relationship among the nodes and in this case we say the graph is undirected.

Definitions

Size and complexity

Undirected
graph
n= 4
m = 6 (=4*3/2)

Ignoring self
loops

Size and complexity

Directed graph
n= 4
m = 12 (=16-4)

Ignoring self
loops

Some special cases

Some special cases

Degree

Random graphs

Erdös-Renyi (ER) Model

Create a network with n nodes connecting them with m (undirected) edges chosen randomly out of
the possible n*(n-1)/2 edges.

The probability of two random nodes to be connected is: p = 2m / (n *(n − 1))

The probability of a node to have a degree k (approx. Poisson):

E-R graph with p=0.01

Random graphs (1)

Barabasi-Albert (BA) Model

Networks grow: nodes are not fixed but grow as a function of time

Preferential attachment: the probability that a node gets an edge is proportional to its current
degree.

Start from a network with n nodes and m edges and add a node at every step, connecting it to
p<= N other nodes (with probability depending on their degree).

At time T the network will have n+T nodes and m+pT edges.

The probability of a node to have a degree k:

Example: scale free networks

Internet and social relationships

Definition: Path

Definition: Path

a,b,c,d is the shortest path from
a to d

Finding paths...

Eulerian Cycle (undirected graphs)

Is it possible to walk around the
graph in a way that would involve
crossing each EDGE exactly
once getting back to start node?

If and only if 0 or 2 nodes have
an ODD number of edges

YES: DABDCED NO

Algorithms exist to find the path in O(n+m)

Finding paths...

Eulerian Cycle (directed graphs)

Is it possible to walk around the
graph in a way that would involve
crossing each EDGE exactly
once getting back to start node?

If the in-degree and out-degree
of all nodes are EQUAL

NO YES: DCACEDABD

Algorithms exist to find the path in O(n+m)

Finding paths...

Hamiltonian Cycle (undirected graphs)

Is it possible to walk around the
graph in a way that would involve
crossing each NODE exactly
once getting back to start node?

YES, if each node has degree >=n/2 (num
nodes, n >3)

This is a more complex problem. No polynomial
solution is currently known!

YES: ACBEDA

NP-complete problem:

Problems for which there are no
polynomial time algorithms
known.
IF there was one, then all NP
problems would be solved
polynomially and P would be
equal to NP (P=NP).
Interestingly, it is easy to check if
a solution is correct or not (but it is
very hard to find such a solution!).

Graph ADT

NOTE: sometimes
graphs don’t change
after being loaded
(no delete)

INT

How can we represent a graph?

Adjacency matrix

Adjacency matrix

+ : flexible, can put weights on edges

+ : quick to check if edge is present (both ways!)

+ : in undirected graphs, matrix is symmetric
(saves half of the space)

- : in general, it uses a lot of space
(matrix n x n no matter how many edges)

Adjacency list

Adjacency list: undirected graph

Adjacency list

+: flexible, nodes can be complex objects
(ex. node1.list_add(node2);)

+: uses less space

: checking presence of an edge is in general slower
(requires going through the list of source node)

-: getting all incoming edges of a node is slow
(requires going through all nodes!)
Workaround: store another list with all “IN”-linking nodes

Possible implementations

Both the concepts of adjacency matrix and adjacency list can be implemented in several ways.
Our simple implementation will use a dictionary

Graph as adjacency matrix: exercise

Nodes:
['Node_1', 'Node_2', 'Node_3', 'Node_4', 'Node_5', 'Node_6']
Matrix:
[[0, 0.5, 0, 0, 0, 1], [0, 0, 0.5, 0, 0, 1], [0, 0, 0, 0.5, 0, 1], [0, 0,
0, 0, 0.5, 1], [0.5, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 1]]

Output of print(G):

Weighted Graph (adj list as a dict of dicts)

for simplicity nodes are strings (can
make them objects as an exercise)

Summary

Iterating through nodes/edges

Equivalent ways of looping through nodes and edges

How much do these operations cost? (n nodes, m edges)

● Looping through nodes is O(n)
● Looping through edges is:

○ O(m + n) with adjacency lists and variants
○ O(n^2) with adjacency matrices

Graph traversal

Naive idea, just iterate through the nodes and
edges with:

or

but this does not take into account the
topology of the graph and is still O(n + m)

OK in some cases, but not what we are
looking for!

Graph traversal

As in the case of trees, two possible methods:

● Breadth first search (BFS)
● Depth first search (DFS)

Graph traversal

As in the case of trees, two possible methods:

● Breadth first search (BFS)
● Depth first search (DFS)

but graphs are more complicated that trees (these
are Direct Acyclic Graphs)

no matter what,
beware of cycles!
Hint: mark visited nodes

Graph traversal: BFS

BFS, goals

Graph traversal

Warning. Wrong code!!!

Graph traversal

Warning. Wrong code!!!

Graph traversal

Warning. Wrong code!!!

Graph traversal

Warning. Wrong code!!!

even though we can
avoid adding elements
already in the Queue,
this never gets empty!
→ infinite loop!

Graph traversal: BFS

visiting: a

DFS visit: a

Q: ['a']
visited: {'a'}

enqueue

dequeue

Graph traversal: BFS

visiting: c
visiting: f
visiting: e

DFS visit: a, c, f, e

Q: ['c', 'f', 'e']
visited: {'e', 'f', 'c', 'a'}

a

Graph traversal: BFS

visiting: b
visiting: d

DFS visit: a, c, f, e, b, d

Q: ['f', 'e', 'b', 'd']
visited: {'d', 'b', 'a', 'c', 'e', 'f'}

c

Graph traversal: BFS

visiting: g

DFS visit: a, c, f, e, b, d, g

Q: ['e', 'b', 'd', 'g']
visited: {'d', 'b', 'a', 'g', 'c', 'e', 'f'}

f

Graph traversal: BFS

visiting: h

DFS visit: a, c, f, e, b, d, g, h

Q: ['b', 'd', 'g', 'h']
visited: {'d', 'b', 'h', 'a', 'g', 'c', 'e', 'f'}

e

Graph traversal: BFS

visiting: -

DFS visit: a, c, f, e, b, d, g, h

Q: ['d', 'g', 'h']
visited: {'d', 'b', 'h', 'a', 'g', 'c', 'e', 'f'}

b

Graph traversal: BFS

visiting: -

DFS visit: a, c, f, e, b, d, g, h

Q: ['g', 'h']
visited: {'d', 'b', 'h', 'a', 'g', 'c', 'e', 'f'}

d

Graph traversal: BFS

visiting: j

DFS visit: a, c, f, e, b, d, g, h, j

Q: ['h', 'j']
visited: {'d', 'b', 'j', 'h', 'a', 'g', 'c', 'e', 'f'}

g

Graph traversal: BFS

visiting: -

DFS visit: a, c, f, e, b, d, g, h, j

Q: ['j']
visited: {'d', 'b', 'j', 'h', 'a', 'g', 'c', 'e', 'f'}

h

Graph traversal: BFS

visiting: -

DFS visit: a, c, f, e, b, d, g, h, j

Q: [] → DONE
visited: {'d', 'b', 'j', 'h', 'a', 'g', 'c', 'e', 'f'}

Node Dist from a
a 0
c 1
f 1
e 1
b 2
d 2
g 2
h 2
j 3

j

Graph traversal: BFS tree of the graph

visiting: -
visited: {'d', 'b', 'j', 'h', 'a', 'g', 'c', 'e', 'f'}
Q: []
DONE!

BFS from a: c, f, e, b, d, g, h, j

This can be done by
storing a pointer
to parents!

Graph traversal: BFS complexity

BFS: application. Shortest path

for fun: https://www.csauthors.net/distance

https://www.csauthors.net/distance

BFS: application. Shortest distance/Shortest path

Initially
all distances: +∞
all parents: -1

distance root <-> root = 0
parent of root = root

distances is used also as
‘visited’
if not set, distance node:
distance of parent +1

BFS: application. Shortest distance/Shortest path

Distances from 'a': {'a': 0, 'c': 1, 'f': 1, 'e': 1, 'b': 2, 'd': 2, 'g': 2, 'j': 3, 'h': 2,
'k': inf, 'l': inf}
All parents: {'a': 'a', 'c': 'a', 'f': 'a', 'e': 'a', 'b': 'c', 'd': 'c', 'g': 'f', 'j': 'g', 'h': 'e',
'k': -1, 'l': -1}

BFS: application. Shortest distance/Shortest path

Distances from 'b': {'a': 4, 'c': 5, 'f': 1, 'e': 5, 'b': 0, 'd': 4, 'g': 2, 'j': 3, 'h':
6, 'k': inf, 'l': inf}
All parents: {'a': 'j', 'c': 'a', 'f': 'b', 'e': 'a', 'b': 'b', 'd': 'j', 'g': 'f', 'j': 'g', 'h':
'e', 'k': -1, 'l': -1}

BFS: application. Shortest distance/Shortest path

printing the shortest path...

BFS: application. Shortest distance/Shortest path

printing the shortest path...

Path from 'a' to 'j': a --> f --> g --> j
Path from 'a' to 'k': Not available

All parents: {'a': 'a', 'c': 'a', 'f': 'a', 'e': 'a', 'b': 'c', 'd':
'c', 'g': 'f', 'j': 'g', 'h': 'e', 'k': -1, 'l': -1}

root or nodes not
reached == -1

BFS: application. Shortest distance/Shortest path

printing the shortest path...

Path from 'b' to 'c': b --> f --> g --> j --> a --> c

root or nodes not
reached == -1

All parents: {'a': 'j', 'c': 'a', 'f': 'b', 'e': 'a', 'b': 'b', 'd':
'j', 'g': 'f', 'j': 'g', 'h': 'e', 'k': -1, 'l': -1}

Exercise

What if the shortest path between (a,j) is j→ a???

Shortest path from 'a' to 'j': j --> a

Traversals: Depth First Search (DFS)

Traversals: Depth First Search (DFS)

Idea:

Visit the first node (mark it as visited)…

 … then recursively all its children nodes
(follow one path until it ends)

Traversals: Depth First Search (DFS)

Idea:

Visit the first node (mark it as visited)…

 … then recursively all its children nodes
(follow one path until it ends)

Execution stack:DFS(1)

Traversals: Depth First Search (DFS)

Idea:

Visit the first node (mark it as visited)…

 … then recursively all its children nodes
(follow one path until it ends)

Execution stack:DFS(1, DFS(2))

Traversals: Depth First Search (DFS)

Idea:

Visit the first node (mark it as visited)…

 … then recursively all its children nodes
(follow one path until it ends)

Execution stack:DFS(1, DFS(2, DFS(3)))

Traversals: Depth First Search (DFS)

Idea:

Visit the first node (mark it as visited)…

 … then recursively all its children nodes
(follow one path until it ends)

Execution stack:DFS(1, DFS(2, DFS(3, DFS(4))))

Traversals: Depth First Search (DFS)

Idea:

Visit the first node (mark it as visited)…

 … then recursively all its children nodes
(follow one path until it ends)

Execution stack:DFS(1, DFS(2, DFS(3)))

DFS(4): nothing to do. Done.

Traversals: Depth First Search (DFS)

Idea:

Visit the first node (mark it as visited)…

 … then recursively all its children nodes
(follow one path until it ends)

Execution stack:DFS(1, DFS(2, DFS(3, DFS(6))))

Traversals: Depth First Search (DFS)

Idea:

Visit the first node (mark it as visited)…

 … then recursively all its children nodes
(follow one path until it ends)

Execution stack:DFS(1, DFS(2, DFS(3))))

DFS(6): nothing to do. Done.

Traversals: Depth First Search (DFS)

Idea:

Visit the first node (mark it as visited)…

 … then recursively all its children nodes
(follow one path until it ends)

Execution stack:DFS(1, DFS(2)))

DFS(3): nothing to do. Done.

Traversals: Depth First Search (DFS)

Idea:

Visit the first node (mark it as visited)…

 … then recursively all its children nodes
(follow one path until it ends)

Execution stack:DFS(1, DFS(2, DFS(5))))

Traversals: Depth First Search (DFS)

Idea:

Visit the first node (mark it as visited)…

 … then recursively all its children nodes
(follow one path until it ends)

Execution stack:DFS(1, DFS(2))

DFS(5): nothing to do. Done.

Traversals: Depth First Search (DFS)

Idea:

Visit the first node (mark it as visited)…

 … then recursively all its children nodes
(follow one path until it ends)

Execution stack:DFS(1)

DFS(2): nothing to do. Done.

Traversals: Depth First Search (DFS)

Idea:

Visit the first node (mark it as visited)…

 … then recursively all its children nodes
(follow one path until it ends)

Execution stack: DONE!

DFS(1): nothing to do. Done.

Traversals: Depth First Search (DFS)

Idea:

Visit the first node (mark it as visited)…

 … then recursively all its children nodes
(follow one path until it ends)

Execution stack: DFS(7)

Done.

Recursive Depth First Search (DFS)

DFS from a:
visiting: a
visiting: c
visiting: b
visiting: f
visiting: g
visiting: j
visiting: d
visiting: e
visiting: h

Recursive Depth First Search (DFS)

DFS from b:
visiting: b
visiting: f
visiting: g
visiting: j
visiting: a
visiting: c
visiting: d
visiting: e
visiting: h

Recursive Depth First Search (DFS)

With recursive calls, “unclosed” calls are memorized in
the stack and with big graphs this can cause a stack
overflow error.

Iterative Depth First Search (DFS)

DFS from a:
visiting a
visiting e
visiting h
visiting j
visiting d
visiting b
visiting f
visiting g
visiting c

DFS from b:
visiting b
visiting f
visiting g
visiting j
visiting d
visiting a
visiting e
visiting h
visiting c

Connected graphs and components

Connected components

Reachability

Application of DFS

Connected components

● ids is a list containing the component identifiers (it is also used as
‘visited’ structure)

● ids[u] is the identifier of the connected component to which u belongs

Connected components

3 connected components:
{'a': 1, 'b': 1, 'c': 1, 'd': 1, 'e': 2, 'g': 2, 'f': 2, 'h': 2, 'i': 2, 'j': 3, 'k': 3}

Connected components

3 connected components:
{'a': 1, 'b': 1, 'c': 1, 'd': 1, 'e': 2, 'g': 2, 'f': 2, 'h': 2, 'i': 2, 'j': 3, 'k': 3}

Connected components

3 connected components:
{'a': 1, 'b': 1, 'c': 1, 'd': 1, 'e': 2, 'g': 2, 'f': 2, 'h': 2, 'i': 2, 'j': 3, 'k': 3}

Connected components

3 connected components:
{'a': 1, 'b': 1, 'c': 1, 'd': 1, 'e': 2, 'g': 2, 'f': 2, 'h': 2, 'i': 2, 'j': 3, 'k': 3}

ids is != 0

Connected components

3 connected components:
{'a': 1, 'b': 1, 'c': 1, 'd': 1, 'e': 2, 'g': 2, 'f': 2, 'h': 2, 'i': 2, 'j': 3, 'k': 3}

Connected components

3 connected components:
{'a': 1, 'b': 1, 'c': 1, 'd': 1, 'e': 2, 'g': 2, 'f': 2, 'h': 2, 'i': 2, 'j': 3, 'k': 3}

ids is != 0

Connected components

3 connected components:
{'a': 1, 'b': 1, 'c': 1, 'd': 1, 'e': 2, 'g': 2, 'f': 2, 'h': 2, 'i': 2, 'j': 3, 'k': 3}

Connected components

3 connected components:
{'a': 1, 'b': 1, 'c': 1, 'd': 1, 'e': 2, 'g': 2, 'f': 2, 'h': 2, 'i': 2, 'j': 3, 'k': 3}

ids is != 0

Connected components

3 connected components:
{'a': 1, 'b': 1, 'c': 1, 'd': 1, 'e': 2, 'g': 2, 'f': 2, 'h': 2, 'i': 2, 'j': 3, 'k': 3}

ids is != 0

Connected components

3 connected components:
{'a': 1, 'b': 1, 'c': 1, 'd': 1, 'e': 2, 'g': 2, 'f': 2, 'h': 2, 'i': 2, 'j': 3, 'k': 3}

call on d
completed

Connected components

3 connected components:
{'a': 1, 'b': 1, 'c': 1, 'd': 1, 'e': 2, 'g': 2, 'f': 2, 'h': 2, 'i': 2, 'j': 3, 'k': 3}

some steps later…
component 1 is
done, component
2 starts...

call on c,b,a
completed in
the order
The algorithm
tries to restart
from b,c,d but
nodes are
visited…

Connected components

3 connected components:
{'a': 1, 'b': 1, 'c': 1, 'd': 1, 'e': 2, 'g': 2, 'f': 2, 'h': 2, 'i': 2, 'j': 3, 'k': 3}

Definitions

Ignored, trivial cycle

Definitions

Idea: perform a DFS visit, if it finds a node
already visited then there is a cycle

Cycle detection: undirected graph

Cycle detection: undirected graph

True

Cycle detection: undirected graph

True

Cycle detection: undirected graph

False

Cycle detection: directed graph

Directed acyclic graph (DAG)

Cycle detection

Cycle detection

visit a

Cycle detection

visit b

Cycle detection

visit c

Cycle detection

back from a to c
→ cycle: wrong answer

Edge classification

edges part of
the DFS visit

Edge classification
DFS edge
Forward edge
Back edge
Cross edge

perform a DFS visit
if dt[v] == 0 → equals to v
NOT visited

clock is increased by one at
each operation

increase the time and set the finish time of node

Edge classification
DFS edge
Forward edge
Back edge
Cross edge

Start time a: 1

Edge classification
DFS edge
Forward edge
Back edge
Cross edge

Start time a: 1
DFS edge: a --> b

Edge classification
DFS edge
Forward edge
Back edge
Cross edge

Start time a: 1
DFS edge: a --> b

Start time b: 2

Edge classification
DFS edge
Forward edge
Back edge
Cross edge

Start time a: 1
DFS edge: a --> b

Start time b: 2
DFS edge: b --> c

Edge classification
DFS edge
Forward edge
Back edge
Cross edge

Start time a: 1
DFS edge: a --> b

Start time b: 2
DFS edge: b --> c

Start time c: 3

Edge classification
DFS edge
Forward edge
Back edge
Cross edge

Start time a: 1
DFS edge: a --> b

Start time b: 2
DFS edge: b --> c

Start time c: 3
Finish time c: 4

Edge classification
DFS edge
Forward edge
Back edge
Cross edge

Start time a: 1
DFS edge: a --> b

Start time b: 2
DFS edge: b --> c

Start time c: 3
Finish time c: 4
Finish time b: 5

Edge classification
DFS edge
Forward edge
Back edge
Cross edge

Start time a: 1
DFS edge: a --> b

Start time b: 2
DFS edge: b --> c

Start time c: 3
Finish time c: 4
Finish time b: 5

Forward edge: a--> c

Edge classification
DFS edge
Forward edge
Back edge
Cross edge

Start time a: 1
DFS edge: a --> b

Start time b: 2
DFS edge: b --> c

Start time c: 3
Finish time c: 4
Finish time b: 5

Forward edge: a--> c
DFS edge: a --> d

Edge classification
DFS edge
Forward edge
Back edge
Cross edge

Start time a: 1
DFS edge: a --> b

Start time b: 2
DFS edge: b --> c

Start time c: 3
Finish time c: 4
Finish time b: 5

Forward edge: a--> c
DFS edge: a --> d

Start time d: 6

Edge classification
DFS edge
Forward edge
Back edge
Cross edge

Start time a: 1
DFS edge: a --> b

Start time b: 2
DFS edge: b --> c

Start time c: 3
Finish time c: 4
Finish time b: 5

Forward edge: a--> c
DFS edge: a --> d

Start time d: 6
Back edge: d--> a

Edge classification
DFS edge
Forward edge
Back edge
Cross edge

Start time a: 1
DFS edge: a --> b

Start time b: 2
DFS edge: b --> c

Start time c: 3
Finish time c: 4
Finish time b: 5

Forward edge: a--> c
DFS edge: a --> d

Start time d: 6
Back edge: d--> a
Cross edge: d --> b

Edge classification
DFS edge
Forward edge
Back edge
Cross edge

Start time a: 1
DFS edge: a --> b

Start time b: 2
DFS edge: b --> c

Start time c: 3
Finish time c: 4
Finish time b: 5

Forward edge: a--> c
DFS edge: a --> d

Start time d: 6
Back edge: d--> a
Cross edge: d --> b

Finish time d: 7

Edge classification
DFS edge
Forward edge
Back edge
Cross edge

Start time a: 1
DFS edge: a --> b

Start time b: 2
DFS edge: b --> c

Start time c: 3
Finish time c: 4
Finish time b: 5

Forward edge: a--> c
DFS edge: a --> d

Start time d: 6
Back edge: d--> a
Cross edge: d --> b

Finish time d: 7
Finish time a: 8

Edge classification
DFS edge
Forward edge
Back edge
Cross edge

Start time a: 1
DFS edge: a --> b

Start time b: 2
DFS edge: b --> c

Start time c: 3
Finish time c: 4
Finish time b: 5

Forward edge: a--> c
DFS edge: a --> d

Start time d: 6
Back edge: d--> a
Cross edge: d --> b

Finish time d: 7
Finish time a: 8
Start time e: 9

Edge classification
DFS edge
Forward edge
Back edge
Cross edge

Start time a: 1
DFS edge: a --> b

Start time b: 2
DFS edge: b --> c

Start time c: 3
Finish time c: 4
Finish time b: 5

Forward edge: a--> c
DFS edge: a --> d

Start time d: 6
Back edge: d--> a
Cross edge: d --> b

Finish time d: 7
Finish time a: 8
Start time e: 9

Cross edge: e --> c

Edge classification
DFS edge
Forward edge
Back edge
Cross edge

Start time a: 1
DFS edge: a --> b

Start time b: 2
DFS edge: b --> c

Start time c: 3
Finish time c: 4
Finish time b: 5

Forward edge: a--> c
DFS edge: a --> d

Start time d: 6
Back edge: d--> a
Cross edge: d --> b

Finish time d: 7
Finish time a: 8
Start time e: 9

Cross edge: e --> c
Finish time e: 10
Discovery times:{'a': 1, 'b': 2, 'c': 3, 'd': 6, 'e': 9}
Finish times: {'a': 8, 'b': 5, 'c': 4, 'd': 7, 'e': 10}

Edge classification
DFS edge
Forward edge
Back edge
Cross edge

NOTE in the DFS visit:
[1,8] completely contains [2,5] → B descends from A
[1,8] completely contains [3,4] → C descends from A
[9,10] does not overlap [2,5], [6,7] → E-B E-D are not descendans

Intervals describe the relationship between nodes

Cycle detection
DFS edge
Forward edge
Back edge
Cross edge

u

v

Cycle detection
DFS edge
Forward edge
Back edge
Cross edge

v

u

Cycle detection
DFS edge
Forward edge
Back edge
Cross edge

NO Cycle!

Cycle detection
DFS edge
Forward edge
Back edge
Cross edge

Cycle!

Cycle detection: the code
DFS edge
Forward edge
Back edge
Cross edge

Does G have a cycle? False

Back edge: c --> a
Does G have a cycle? True

simplified version of the code seen before.
We just care about forward and back edges

Comment on edge classification

DFS edge
Forward edge
Back edge
Cross edge

1. if dt[v] == 0, it is the first time we see v in the
DFS search. DFS Tree edge!

2. if dt[u] > dt[v] the DFS search found u after v
and since the DFS visit started from v is not
complete (ft[v] = 0), v is a descendant of u.
[Path: v→ X → u]. Back edge!

3. if dt[u] < dt[v] the DFS search found v after u,
therefore v descends from u. Since the visit of
v is complete (ft[v] != 0) this is a Forward
edge! [Path: u → Y → v]

u v

X

Y
[X,0]

[X+1,0]

Comment on edge classification

DFS edge
Forward edge
Back edge
Cross edge

1. if dt[v] == 0, it is the first time we see v in the
DFS search. DFS Tree edge!

2. if dt[u] > dt[v] the DFS search found u after v
and since the DFS visit started from v is not
complete (ft[v] = 0), v is a descendant of u.
[Path: v→ X → u]. Back edge!

3. if dt[u] < dt[v] the DFS search found v after u,
therefore v descends from u. Since the visit of
v is complete (ft[v] != 0) this is a Forward
edge! [Path: u → Y → v]

u v

X

Y
[X+K+T,0]

[X,0]

[X+K,0]

Comment on edge classification

DFS edge
Forward edge
Back edge
Cross edge

1. if dt[v] == 0, it is the first time we see v in the
DFS search. DFS Tree edge!

2. if dt[u] > dt[v] the DFS search found u after v
and since the DFS visit started from v is not
complete (ft[v] = 0), v is a descendant of u.
[Path: v→ X → u]. Back edge!

3. if dt[u] < dt[v] the DFS search found v after u,
therefore v descends from u. Since the visit of
v is complete (ft[v] != 0) this is a Forward
edge! [Path: u → Y → v]

u v

X

Y
[X,0]

[X+K,W]

[X+K+T,Y]

Topological sorting

We can think at
these DAGs as
dependency
graphs. If we
have edge x-->y
activity x has to
be completed
before y starts.

Note: Edges always from left to right: correct
order!

Topological sorting

Topological sorting

Topological sorting

Note: we are destroying the graph!!!
We could make a copy of the graph
first, but this is not a great solution...

Picking 2 or 3 is equivalent (i.e. originates
equivalent topological orderings)

Topological sorting

Topological sorting: example

Topological sorting: example

Topological sorting: example

Topological sorting: example

Topological sorting: example

Topological sorting: example

Topological sorting: example

Topological sorting: example

Topological sorting: example

Topological sorting: example

Topological sorting: example

Topological sorting: example

What happens if nodes are chosen in a
different order in the DFS visit?

Topological sorting: example

What happens if nodes are chosen in a
different order in the DFS visit?

[1,4]

[2,3]

[8,9]

[6,7]

[5,10]

Stack = {a, c, e, b, d}

Topological sorting: the code

Topological sorting: the code

Strongly connected graphs and components

Strongly connected graphs and components

Strongly connected graphs and components

Naive (and wrong!) solution

In a nutshell: perform a DSF visit,
assign to each visit the same
component number until all nodes
visited

DFS visit starting from C,
then from B, then from A

DFS visit starting from B,
then from A

DFS visit starting from A

Strongly connected components algorithm

Topological sorting of general graphs

NOTE: we might
have cycles, so this
does not necessarily
mean that we obtain a
topological sort!!!

But the important
thing is that all the
nodes before the
cycle(s) and after the
cycles(s) are put in the
correct topological
sort.

Transpose of a graph

transpose(G)

Transpose of a graph

Modified connected components
Instead of examining the nodes in an arbitrary order, this version of cc(G,S) examines them in the order in
which they are stored in the stack S.

Putting it all together

top_sort(G)

transpose(G)

cc(GT,S)

Output:
Components: 3
Ids:{'b': 2, 'a': 1, 'd': 3, 'c': 3, 'e': 3, 'f': 3}

Proof of correctness...

YES. Otherwise
any cycle would
be a bigger SCC.

 A
 B

CD
EF

NO CYCLES:
top_sort
correctly sorts
the components

Proof of correctness...

 A
 B

CD
EF

Proof of correctness...

 A
 B

CD
EF

Proof of correctness...

 A

 B

CD
EF

Proof of correctness...

 A

 B

CD
EF

Proof of correctness...

If you are starting to have fun...

Good news… there are at least 110+ other algorithms on graphs!

