Scientific Programming: Part B

Graphs

Luca Bianco - Academic Year 2019-20
luca.bianco@fmach.it
[credits: thanks to Prof. Alberto Montresor]

Graphs: examples

[From: Compeau et al, How to apply de Bruijn graphs to genome assembly, Nature Biotech,2011]

http://www.kegg.jp/

Graphs: examples

[From: Compeau et al, How to apply de Bruijn graphs to genome assembly, Nature Biotech,2011]

Graphs: examples

A 10 actor social network introduced by David
Krackhardt to illustrate: degree, betweenness,
centrality, closeness, etc. The traditional labeling is:
Andre=1, Beverley=2, Carol=3, Diane=4,
$E d=5$, Fernando=6, Garth=7, Heather=8, Ike=9,

The London underground system
Jane=10.
[Social Network analysis for startups, "O'Reilly Media, Inc.", 2011]

Graphs

Graph:

$$
G=(V, E)
$$

Where V and E are finite sets:

- V is the set of nodes (i.e. 'things')
" E is the set of edges (i.e. relationships among things) $E: V \times V$

Graphs

Directed graph $G=(V, E)$

- V is a set of vertexes/nodes
- E is a set of edges, i.e. ordered pairs (u, v) of nodes

$$
\begin{aligned}
V= & \{a, b, c, d, e, f\} \\
E= & \{(a, b),(a, d),(b, c),(d, a) \\
& (d, c),(d, e),(e, c)\}
\end{aligned}
$$

Undirected graph $G=(V, E)$

- V is a set of vertexes/nodes
- E is a set of edges, i.e. unordered pairs $[u, v]$ of nodes
$\mathrm{V}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}\}$
$E=\{[a, b],[a, d],[b, c]$, [c,d],[d,e],[c,e] \}

Relations represented by edges can be symmetric (e.g. sibling_of: if X is sibling of Y then Y is sibling of X) and in this case the edges are just lines rather than arrows. In this case the graph is directed. In case relationships are not symmetric (i.e. $X \rightarrow Y$ does not imply $Y \rightarrow X)$ we put an arrow to indicate the direction of the relationship among the nodes and in this case we say the graph is undirected.

Definitions

- Vertex v is adjacent to u if and only if $(u, v) \in E$.
- In an undirected graph, the adjacency relation is symmetric
- An edge (u, v) is said to be incident from u to v

- (a, b) is incident from a to b
- (a, d) is incident from a to d
- (d, a) is incident from d to a
- b is adjacent to a
- d is adjacent to a
- a is adjacent to d

Size and complexity

Definitions

- $n=|V|$: number of nodes
- $m=|E|$: number of edges

Relationships between n and m

- In an undirected graph, $m \leq \frac{n(n-1)}{2}=O\left(n^{2}\right)$
- In a directed graph, $m \leq n^{2}-n=O\left(n^{2}\right)$

Complexity of graph algorithms

- The computational complexity is measured based on both n and m (e.g. $O(n+m)$)

Undirected graph
$\mathrm{n}=4$
$m=6(=4 * 3 / 2)$

Size and complexity

Definitions

- $n=|V|$: number of nodes
- $m=|E|$: number of edges

Relationships between n and m

- In an undirected graph, $m \leq \frac{n(n-1)}{2}=O\left(n^{2}\right)$
- In a directed graph, $m \leq n^{2}-n=O\left(n^{2}\right)$

Complexity of graph algorithms

- The computational complexity is measured based on both n and m (e.g. $O(n+m)$)

Directed graph
$\mathrm{n}=4$
$\mathrm{m}=12$ (=16-4)

Some special cases

- A graph with an edge between all pairs of nodes is complete
- Informally (there is no agreement on the definitions)
- A graph with "few" edges is said to be sparse; e.g., graphs with $m=O(n), m=O(n \log n)$
- A graph with "several" edges is said to be dense; e.g. $m=\Omega\left(n^{2}\right)$

Some special cases

- An unrooted tree is a connected graph with $m=n-1$
- A rooted tree is a connected graph with $m=n-1$ in which one node is designated as the root.
- A set of trees is called a forest

Degree

Undirected graphs

The degree of a node is the number of edges incident on it.

Directed graphs

The in-degree (out-degree) of a node is the number of edges incident to (from) it.

Random graphs

Erdös-Renyi (ER) Model

Create a network with \mathbf{n} nodes connecting them with \mathbf{m} (undirected) edges chosen randomly out of the possible $\mathbf{n}^{*}(\mathbf{n}-\mathbf{1}) / \mathbf{2}$ edges.

The probability of two random nodes to be connected is: $\mathbf{p}=\mathbf{2 m} /(\mathbf{n}$ * $(\mathbf{n}-\mathbf{1}))$
The probability of a node to have a degree \mathbf{k} (approx. Poisson):

$$
p(k) \simeq e^{-\langle k\rangle} \frac{\langle k\rangle^{k}}{k!}
$$

$E-R$ graph with $p=0.01$

Random graphs (1)

Barabasi-Albert (BA) Model

Networks grow: nodes are not fixed but grow as a function of time
Preferential attachment: the probability that a node gets an edge is proportional to its current degree.

Start from a network with \mathbf{n} nodes and \mathbf{m} edges and add a node at every step, connecting it to $\mathbf{p}<=\mathbf{N}$ other nodes (with probability depending on their degree).

At time \mathbf{T} the network will have $\mathbf{n + T}$ nodes and $\mathbf{m}+\mathbf{p} \mathbf{T}$ edges.
The probability of a node to have a degree \mathbf{k} :

$$
p(k) \sim k^{-\gamma_{\mathrm{BA}}}
$$

Example: scale free networks

BA networks are scale free: many vertices have few links while some (hubs) are highly connected

Very robust against failure but vulnerable to intentional attacks

Examples of scale free networks:
Protein-protein interaction networks
Signal transduction and transcription networks Internet and social relationships

Most highly connected proteins in the cell are the most important for survival

Definition: Path

Path

In a graph $G=(V, E)$, a path C of length k is a sequence of nodes $u_{0}, u_{1}, \ldots, u_{k}$ such that $\left(u_{i}, u_{i+1} \in E\right)$ for $0 \leq i \leq k-1$.

Example: a, b, c, e, d is a path of length 4

It is also the shortest path between a and d

Note: a path is said to be simple if all its nodes are distinct

Definition: Path

Path

In a graph $G=(V, E)$, a path C of length k is a sequence of nodes $u_{0}, u_{1}, \ldots, u_{k}$ such that $\left(u_{i}, u_{i+1} \in E\right)$ for $0 \leq i \leq k-1$.

Example: a, b, c, e, d is a path of length 4

Note: a path is said to be simple if all its nodes are distinct
a, b, c, d is the shortest path from a to d

Finding paths...

Eulerian Cycle (undirected graphs)

YES: DABDCED
Is it possible to walk around the graph in a way that would involve crossing each EDGE exactly once getting back to start node?

If and only if 0 or 2 nodes have an ODD number of edges

Algorithms exist to find the path in $\mathrm{O}(\mathrm{n}+\mathrm{m})$

Finding paths...

Eulerian Cycle (directed graphs)

NO
Is it possible to walk around the graph in a way that would involve crossing each EDGE exactly once getting back to start node?

YES: DCACEDABD

If the in-degree and out-degree of all nodes are EQUAL

Algorithms exist to find the path in $\mathrm{O}(\mathrm{n}+\mathrm{m})$

Finding paths...

Hamiltonian Cycle (undirected graphs)

YES: ACBEDA

NP-complete problem:

Problems for which there are no polynomial time algorithms known.
IF there was one, then all NP problems would be solved polynomially and P would be equal to NP ($\mathrm{P}=\mathrm{NP}$). Interestingly, it is easy to check if a solution is correct or not (but it is very hard to find such a solution!).

Is it possible to walk around the graph in a way that would involve crossing each NODE exactly once getting back to start node?

YES, if each node has degree $>=n / 2$ (num nodes, $\mathrm{n}>3$)

This is a more complex problem. No polynomial solution is currently known!

Graph ADT

In the most general case, graphs are dynamic data structures in which nodes and edges can be added/removed

NOTE: sometimes graphs don't change after being loaded (no delete)

How can we represent a graph?

Two possible "classic" implementations

- Adjacency matrix
- Adjacency lists

Adjacency matrix

$$
m_{u v}=\left\{\begin{array}{ll}
1 & (u, v) \in E \\
0 & (u, v) \notin E
\end{array} \quad \text { Space }=n^{2}\right. \text { bits }
$$

Adjacency matrix

$(u, v) \in E$
 $(u, v) \notin E$

$\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$

+ : flexible, can put weights on edges
+ : quick to check if edge is present (both ways!)
+ : in undirected graphs, matrix is symmetric (saves half of the space)
- : in general, it uses a lot of space (matrix $\mathrm{n} \times \mathrm{n}$ no matter how many edges)

$$
m_{u v}= \begin{cases}1 & (u, v) \in E \\ 0 & (u, v) \notin E\end{cases}
$$

Space $=n^{2}$ or $n(n-1) / 2$

$\mathbf{0}$
$\mathbf{0}$
$\mathbf{1}$
$\mathbf{1}$
$\mathbf{2}$
$\mathbf{3}$
$\mathbf{4}$
$\mathbf{5}$$\left(\begin{array}{llllll}\mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} \\ & 1 & 0 & 1 & 0 & 0 \\ & & & 1 & 0 & 0 \\ & 0 \\ & & & & 1 & 1 \\ & 0 \\ & & & & & 1\end{array}\right)$

- Edges may be associated with a weight (cost, profit, etc.)
- The weight is associated through a cost function $w: V \times V \rightarrow \mathbb{R}$
- If there is no edge between two vertices $u, v, w(u, v)=+\infty$

Adjacency list

$$
G . \operatorname{adj}(u)=\{v \mid(u, v) \in E\}
$$

Space $=a n+b m$ bits

Adjacency list: undirected graph

$$
G \cdot \operatorname{adj}(u)=\{v \mid(u, v) \in E\}
$$

Space $=a n+2 \cdot b m$

Adjacency list

+: flexible, nodes can be complex objects (ex. node1.list_add(node2);)
+: uses less space
: checking presence of an edge is in general slower (requires going through the list of source node)
-: getting all incoming edges of a node is slow
(requires going through all nodes!)
Workaround: store another list with all "IN"-linking nodes

G. $\operatorname{adj}(u)=\{v \mid(u, v) \in E\}$

Space $=a n+2 \cdot b m$

Possible implementations

Structure	Java	C ++	Python
Linked list	LinkedList	list	
Static vector	[]	[]	[]
Dynamic vector	ArrayList	vector	list
Set	HashSet TreeSet	set	set
Dictionary	HashMap TreeMap	map	dict

Both the concepts of adjacency matrix and adjacency list can be implemented in several ways. Our simple implementation will use a dictionary

Graph as adjacency matrix: exercise

class DiGraphAsAdjacencyMatrix:
def init (self):
\#would be better a set, but I need an index self. _nodes = list() self. matrix = list(
def len_(self): """gets the number of nodes""" return len(self._nodes)
def nodes(self): return self. nodes
def matrix(self): return self. matrix
def _str__(self): \#TODO
pass
def insertNode(self, node): \#TODO pass
def insertEdge(self, node1, node2, weight): \#TODO pass
def deleteEdge(self, node1, node2): "removing an edge means to set its corresponding place in the matrix to 0 "" \#TODO
pass
def deleteNode(self, node):
""" removing a node means removing
its corresponding row and column in the matrix""
\#TODO \#TOD pass
def adjacent(self, node, incoming = True) \#TODO pass
def edges(self) \#TOD
pas

Nodes:

['Node_1', 'Node_2', 'Node_3', 'Node_4', 'Node_5', 'Node_6']
Matrix:
$[[0,0.5,0,0,0,1],[0,0,0.5,0,0,1],[0,0,0,0.5,0,1],[0,0$,
$0,0,0.5,1],[0.5,0,0,0,0,1],[0,0,0,0,0,1]]$

Output of print(G):

	Node_1	Node_2	Node_3	Node_4	Node_5	Node_6
Node_1	0	0.5	0	0	0	1
Node_2	0	0	0.5	0	0	1
Node_3	0	0	0	0.5	0	1
Node_4	0	0	0	0	0.5	1
Node_5	0.5	0	0	0	0	1
Node_6	0	0	0	0	0	1

Weighted Graph (adj list as a dict of dicts)

class Graph:

```
# initializer, nodes are private!
def __init__(self):
    self. nodes = dict()
```

\#returns the size of the Graph
\#accessible through len(Graph)
def __len__(self).
return len(self.__nodes)
\#returns the nodes
def V(self):
return self.__nodes.keys()
\#a generator of nodes to access all of them \#once (not a very useful example!)
def node iterator(self)
for $\overline{\mathrm{n}}$ in self.__ nodes.keys():
yield n
generator of edges (as triplets (u, v, w)) to access all of them def edge iterator(self):

for \bar{u} in self. nodes

for v in self. nodes[u]:
yield (u,v,self. nodes[u][v])
\#returns all the adjacent nodes of node
\#as a dictionary with key as the other node
\#and value the weight
def adj(self, node)
if node in self.__nodes.keys(): return self. nodes[node]
\#adds the node to the graph
def insert node(self, node):
if node not in self._nodes: self.__nodes[node] $=$ dict()
\#adds the edge startN --> endN with weight w \#that has 0 as default
def insert edge(self, startN, endN, $w=0$):
\#does nothing if already in
self.insert_node(startN)
self.insert_node(endN)
self.__nodes[startN][endN] = w
\#converts the graph into a string
def str (self):
$\overline{\text { out_str }}=$ "Nodes $: \backslash n "+", " . j o i n(s e l f$. nodes)
out_str +="\nEdges: $\backslash n "$
for u in self. nodes:
for v in self. nodes[u]:
out str $+=\overline{"\{ }\} \cdots\} \cdots\} \backslash n "$. format(u, self. $n o d e s[u][v], v$
if $\operatorname{len}(\overline{s e l f .}$ nodes[u]) $==0$:
out str $\overline{+="}\} \backslash n "$.format (u)
return out str

```
a --b--> 0
```

if name $==$ " main "
$\bar{G}=G \overline{r a p h}($
for u, v in [('a', 'b'), ('a', 'd'), ('b', 'c'), ('d', 'a'), ('d', 'c'), ('d', 'e'), ('e', 'c')]:
G.insert edge (u, v)
for edge in $\bar{G} . e d g e _i t e r a t o r():$ print("\{\} --\{\}--> $\left\}^{"}\right.$. format(edge[0],
edge[1], edge[2]))
G.insert node('f')
print("\} \overline { n } G has \{ \} nodes:".format(len(G)))
for node in G.node iterator():
print("\{\}".format(node), end= " ")
print()
print(G)
for simplicity nodes are strings (can make them objects as an exercise)
a --d--> 0
b --c--> 0
d --a--> 0
d - c--> 0
d - e--> 0
e --c--> 0
G has 6 nodes:
b d ce
Nodes
a,b,d,c,e,
Edges:
a --0--> b
a $-0-->d$
b $--0-$ c
d --0--> a
d $--0-->c$
d --0--> e
c $--0->c$
--0--> c

Summary

Adjacency lists/vectors

- Required space $O(n+m)$
- To check whether u is adjacent to v requires $O(n)$
- Ideal for sparse graphs

Iterating through nodes/edges

Equivalent ways of looping through nodes and edges

```
for node in G.V():
    #do something with the node
for u in G.V():
    #for all starting nodes u
    for v in G.adj(u):
        #for all ending nodes v
        #do something with (u,v)
```

 for node in G.node_iterator():
 \#do something with the node
 for edge in G.edge iterator():
 \#do something with the edge
 How much do these operations cost? (n nodes, m edges)
$\mathbf{0}$
$\mathbf{0}$
$\mathbf{1}$
$\mathbf{2}$
$\mathbf{3}$
$\mathbf{4}$
$\mathbf{5}$$\left(\begin{array}{llllll}\mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

- Looping through nodes is $O(n)$
- Looping through edges is:
- $O(m+n)$ with adjacency lists and variants
- $O\left(n^{\wedge} 2\right)$ with adjacency matrices

Adjacency List Representation of Graph

Graph traversal

Problem definition

Given a graph $G=(V, E)$ and a vertex $r \in V$ (root), visit exactly once all the vertexes of the graph that can be reached from r

Naive idea, just iterate through the nodes and edges with:

```
for u in G.V():
    #for all starting nodes u
    for v in G.adj(u):
        #for all ending nodes v
        #do something with (u,v)
```

but this does not take into account the topology of the graph and is still $\mathrm{O}(\mathrm{n}+\mathrm{m})$

OK in some cases, but not what we are
 looking for!

Graph traversal

Problem definition

Given a graph $G=(V, E)$ and a vertex $r \in V$ (root), visit exactly once all the vertexes of the graph that can be reached from r

As in the case of trees, two possible methods:

- Breadth first search (BFS)
- Depth first search (DFS)

Graph traversal

Problem definition

Given a graph $G=(V, E)$ and a vertex $r \in V$ (root), visit exactly once all the vertexes of the graph that can be reached from r

As in the case of trees, two possible methods:

- Breadth first search (BFS)
- Depth first search (DFS)
but graphs are more complicated that trees (these are Direct Acyclic Graphs)
no matter what, beware of cycles!
Hint: mark visited nodes

Graph traversal: BFS

Problem definition

Given a graph $G=(V, E)$ and a vertex $r \in V$ (root), visit exactly once all the vertexes of the graph that can be reached from r

Breadth-first search (BFS)

Traverse the graph by visiting the nodes by levels: first by visiting the nodes at distance 1 from the source, then distance 2 , etc.

- Application: compute the shortest paths from a single source

BFS, goals

To visit nodes at increasing distances from the source

- Visit nodes at distance k before visiting nodes at distance $k+1$

Generate a breadth-first tree

- To generate a tree containing all the nodes reachable from r and such that the path between the root r and the node in the tree corresponds to a shortest path in the graph

Compute the shortest path from s to all the other reachable nodes

- Distance measured as the number of edges to be traversed

Graph traversal

Warning. Wrong code!!!

```
from collections import deque()
def BFS(node):
    Q = deque()
    if node != None:
        Q.append (node)
    while len(Q) > 0:
        curNode = Q.popleft()
        if curNode != None:
            print("{}".format(curNode))
            for v in G.adj(curNode):
                    Q.append(v)
```


Graph traversal

Warning. Wrong code!!!

```
from collections import deque()
def BFS(node):
    Q = deque()
    if node != None:
        Q.append (node)
    while len(Q) > 0:
        curNode = Q.popleft()
        if curNode != None:
            print("{}".format(curNode))
            for v in G.adj(curNode):
                    Q.append(v)
```

Queue $=\{\mathrm{c}, \mathrm{f}, \mathrm{e}\}$

Graph traversal

Warning. Wrong code!!!

```
from collections import deque()
def BFS(node):
    Q = deque()
    if node != None:
        Q.append (node)
    while len(Q) > 0:
        curNode = Q.popleft()
        if curNode != None:
            print("{}".format(curNode))
            for v in G.adj(curNode):
                    Q.append(v)
```


Graph traversal

Warning. Wrong code!!!

```
from collections import deque()
def BFS(node):
    Q = deque()
    if node != None:
        Q.append (node)
    while len(Q) > 0:
        curNode = Q.popleft()
        if curNode != None:
            print("{}".format(curNode))
            for v in G.adj(curNode):
                    Q.append(v)
```


even though we can avoid adding elements already in the Queue, this never gets empty!
\rightarrow infinite loop!

Graph traversal: BFS

from collections import deque
class Graph:
""". . ." ""
def BFS(self, node):
Q = deque()
Q. append (node)
visited = set()
visited. add(node)
print("visiting: \{\}".format(node))
while $\operatorname{len}(Q)>0$:
curNode $=$ Q.popleft()
\#do something with curNode
for n in self.adj(curNode):
\#do something with edge (curNode, n)
if n not in visited:
Q. append (n)
visited.add(n)
print("visiting: \{\}".format(n))
print("visited: \{\}".format(visited))
print("Q: \{\}".format(list(Q)))
visited: \{'a'\}
Q: ['a']
DFS visit: a

Graph traversal: BFS

```
from collections import deque
class Graph:
"""...."""
    def BFS(self, node):
    Q = deque()
    Q.append(node)
    visited = set()
    visited.add(node)
    print("visiting: {}".format(node))
            curNode = Q.popleft()
            #do something with curNode
            for n in self.adj(curNode):
                #do something with edge (curNode, n)
                if n not in visited:
                    Q.append(n)
                    visited.add(n)
                    print("visiting: {}".format(n))
from collections import deque
class Graph:
""". . """
def BFS(self, node):
Q = deque()
Q.append (node)
visited = set()
visited.add(node)
print("visiting: \{\}".format(node))
```

```
while len(Q) > 0:
```

```
while len(Q) > 0:
```

 print("visited: \{\}".format(visited))
 print("Q: \{\}".format(list(Q)))

visiting: c visiting: f visiting: e
visited: \{'e', 'f', 'c', 'a'\}
Q: ['c', 'f', 'e'] \rightarrow a
DFS visit: a, c, f, e

Graph traversal: BFS

```
from collections import deque
class Graph:
"""...."""
    def BFS(self, node):
    Q = deque()
    Q.append(node)
    visited = set()
    visited.add(node)
    print("visiting: {}".format(node))
        while len(Q) > 0:
            curNode = Q.popleft()
            #do something with curNode
            for n in self.adj(curNode):
                #do something with edge (curNode, n)
                if n not in visited:
                    Q.append(n)
                    visited.add(n)
                    print("visiting: {}".format(n))
```

 print("visited: \{\}".format(visited))
 print("Q: \{\}".format(list(Q)))

visited: \{'d', 'b', 'a', 'c', 'e', 'f'\}
Q: ['f', 'e', 'b', 'd']

DFS visit: a, c, f, e, b, d

Graph traversal: BFS

```
from collections import deque
class Graph:
"""...."""
    def BFS(self, node):
    Q = deque()
    Q.append(node)
    visited = set()
    visited.add(node)
    print("visiting: {}".format(node))
        while len(Q) > 0:
            curNode = Q.popleft()
            #do something with curNode
            for n in self.adj(curNode):
                #do something with edge (curNode, n)
                if n not in visited:
                    Q.append(n)
                    visited.add(n)
                    print("visiting: {}".format(n))
```

 print("visited: \{\}".format(visited))
 print("Q: \{\}".format(list(Q)))

visited: \{'d', 'b', 'a', 'g', 'c', 'e', 'f'\}
Q: ['e', 'b', 'd', 'g'] $\longrightarrow f$
DFS visit: a, c, f, e, b, d, g

Graph traversal: BFS

```
from collections import deque
class Graph:
""" . . """
    def BFS(self, node):
    Q = deque()
    Q.append(node)
    visited = set()
    visited.add(node)
    print("visiting: {}".format(node))
        while len(Q) > 0:
            curNode = Q.popleft()
            #do something with curNode
            for n in self.adj(curNode):
                #do something with edge (curNode, n)
                if n not in visited:
                    Q.append(n)
                    visited.add(n)
                    print("visiting: {}".format(n))
```

 print("visited: \{\}".format(visited))
 print("Q: \{\}".format(list(Q)))

visited: \{'d', 'b', 'h', 'a', 'g', 'c', 'e', 'f'\}
Q: ['b', 'd', 'g', 'h']
$\rightarrow \mathrm{e}$
DFS visit: a, c, f, e, b, d, g, h

Graph traversal: BFS

```
from collections import deque
class Graph:
""" """
    def BFS(self, node):
    Q = deque()
    Q.append(node)
    visited = set()
    visited.add(node)
    print("visiting: {}".format(node))
        while len(Q) > 0:
            curNode = Q.popleft()
            #do something with curNode
            for n in self.adj(curNode):
                #do something with edge (curNode, n)
                if n not in visited:
                    Q.append(n)
                    visited.add(n)
                    print("visiting: {}".format(n))
```

 print("visited: \{\}".format(visited))
 print("Q: \{\}".format(list(Q)))

visited: \{'d', 'b', 'h', 'a', 'g', 'c', 'e', 'f'\}
Q: ['d', 'g', 'h']
$\rightarrow b$
DFS visit: a, c, f, e, b, d, g, h

Graph traversal: BFS

```
from collections import deque
class Graph:
"""_ """
    def BFS(self, node):
    Q = deque()
    Q.append(node)
    visited = set()
    visited.add(node)
    print("visiting: {}".format(node))
        while len(Q) > 0:
            curNode = Q.popleft()
            #do something with curNode
            for n in self.adj(curNode):
                #do something with edge (curNode, n)
                if n not in visited:
                    Q.append(n)
                    visited.add(n)
                    print("visiting: {}".format(n))
```

 print("visited: \{\}".format(visited))
 print("Q: \{\}".format(list(Q)))

visited: \{'d', 'b', 'h', 'a', 'g', 'c', 'e', 'f'\}
Q: ['g', 'h']
$\rightarrow d$
DFS visit: a, c, f, e, b, d, g, h

Graph traversal: BFS

```
from collections import deque
class Graph:
"""...."""
    def BFS(self, node):
    Q = deque()
    Q.append(node)
    visited = set()
    visited.add(node)
    print("visiting: {}".format(node))
        while len(Q) > 0:
            curNode = Q.popleft()
            #do something with curNode
            for n in self.adj(curNode):
                #do something with edge (curNode, n)
                if n not in visited:
                    Q.append(n)
                    visited.add(n)
                    print("visiting: {}".format(n))
```

 print("visited: \{\}".format(visited))
 print("Q: \{\}".format(list(Q)))

visited: \{'d', 'b', 'j', 'h', 'a', 'g', 'c', 'e', 'f'\}
Q: ['h', 'j'] \square
DFS visit: a, c, f, e, b, d, g, h, j

Graph traversal: BFS

```
from collections import deque
class Graph:
""" """
    def BFS(self, node):
    Q = deque()
    Q.append(node)
    visited = set()
    visited.add(node)
    print("visiting: {}".format(node))
        while len(Q) > 0:
            curNode = Q.popleft()
            #do something with curNode
            for n in self.adj(curNode):
                #do something with edge (curNode, n)
                if n not in visited:
                    Q.append(n)
                    visited.add(n)
                    print("visiting: {}".format(n))
```

 print("visited: \{\}".format(visited))
 print("Q: \{\}".format(list(Q)))

visited: \{'d', 'b', 'j', 'h', 'a', 'g', 'c', 'e', 'f'\}
Q: [j']
$\longrightarrow h$
DFS visit: a, c, f, e, b, d, g, h, j

Graph traversal: BFS

```
from collections import deque
class Graph:
"""...."""
    def BFS(self, node):
    Q = deque()
    Q.append(node)
    visited = set()
    visited.add(node)
    print("visiting: {}".format(node))
    while len(Q) > 0:
            curNode = Q.popleft()
            #do something with curNode
            for n in self.adj(curNode):
                #do something with edge (curNode, n)
                if n not in visited:
                    Q.append(n)
                    visited.add(n)
                    print("visiting: {}".format(n))
```

 print("visited: \{\}".format(visited))
 print("Q: \{\}".format(list(Q)))

Graph traversal: BFS tree of the graph

```
from collections import deque
class Graph:
"""...."""
    def BFS(self, node):
    Q = deque()
    Q.append(node)
    visited = set()
    visited.add(node)
    print("visiting: {}".format(node))
        while len(Q) > 0:
            curNode = Q.popleft()
            #do something with curNode
            for n in self.adj(curNode):
                #do something with edge (curNode, n)
                if n not in visited:
                    Q.append(n)
                    visited.add(n)
                    print("visiting: {}".format(n))
```

 print("visited: \{\}".format(visited))
 print("Q: \{\}".format(list(Q)))

Q: []
DONE!
BFS from a: c, f, e, b, d, g, h, j

This can be done by storing a pointer to parents!

Graph traversal: BFS complexity

Complexity: $O(n+m)$

- every node is inserted in the queue at most once;
- whenever a node is extracted all its edges are analyzed once and only once;
- number of edges analyzed:

$$
m=\sum_{u \in V} \text { out_degree }(u)
$$

BFS: application. Shortest path

Paul Erdös (1913-1996)

- Mathematician
- $1500+$ papers, $500+$ co-authors

Erdös number

- Erdös has erdos $=0$
- The co-authors of Erdös have erdos $=1$
- If X is co-author of someone with erdos $=k$, but is not co-author of someone with erdos $<k$, then X has erdos $=k+1$
- People who are not reached by this definition have erdos $=+\infty$

Find the path between two authors:
N is a Number Nis a Number

Paul Erdós

Luca Bianco co-authored 11 papers with Vincenzo Manca co-authored 1 paper with Henning Fernau co-authored 1 paper with Zsolt Tuza
co-authored 7 papers with Paul Erdős distance $=4$

BFS: application. Shortest distance/Shortest path

from collections import deque
import math
class Graph:
""". . ." ""
\#computes the distance from root of all nodes def get distance(self, root):
distances $=\operatorname{dict}()$
parents = dict()
for node in self.node iterator():
distances[node] =-math.inf
parents[node] = -1
$Q=$ deque()
Q.append (root)
distances[root] $=0$
parents[root] $=$ root
while $\operatorname{len}(Q)>0$:
curNode $=$ Q.popleft()
for n in self.adj(curNode):
if distances[n] == math.inf:
distances $[\mathrm{n}]=$ distances $[$ curNode $]+1$ parents[n] = curNode
Q.append(n)
return (distances, parents)

Initially

all distances: $+\infty$
all parents: -1
distances is used also as

if not set, distance node:
distance of parent +1

BFS: application. Shortest distance/Shortest path

from collections import deque

 import mathclass Graph:
""". . . "" "
\#computes the distance from root of all nodes def get distance(self, root):
distances $=\operatorname{dict}()$
parents = dict()
for node in self.node iterator():
distances[node] = math.inf
parents[node] = -1
$Q=$ deque()
Q.append (root)
distances[root] $=0$
parents[root] $=$ root
while len $(Q)>0$:
curNode $=$ Q.popleft()
for n in self.adj(curNode):
if distances $[\mathrm{n}]==$ math.inf:
distances $[\mathrm{n}]=$ distances $[$ curNode $]+1$ parents[n] = curNode
Q.append(n)
return (distances, parents)

D, $P=$ G1.get_distance('a')
print("Distances from 'a': \{\}".format(D))
print("All parents: \{\}".format(P))
Distances from 'a': \{'a': 0, 'c': 1, 'f': 1, 'e': 1, 'b': 2, 'd': 2, 'g': 2, 'j': 3, 'h': 2, 'k': inf, 'l': inf\}
All parents: \{'a': 'a', 'c': 'a', 'f': 'a', 'e': 'a', 'b': 'c', 'd': 'c', 'g': 'f', 'j': 'g', 'h': 'e', 'k': -1, 'l': -1\}

BFS: application. Shortest distance/Shortest path

from collections import deque

 import mathclass Graph:
"""...."" "
\#computes the distance from root of all nodes def get distance(self, root):
distances $=\operatorname{dict}()$
parents = dict()
for node in self.node iterator():
distances[node] = math.inf
parents[node] = -1
$Q=$ deque()
Q.append (root)
distances[root] $=0$
parents [root] $=$ root
while $\operatorname{len}(Q)>0$:
curNode $=$ Q.popleft()
for n in self.adj(curNode):
if distances $[\mathrm{n}]==$ math.inf:
distances $[\mathrm{n}]=$ distances $[$ curNode $]+1$ parents[n] = curNode
Q.append(n)
return (distances, parents)
$D, P=G 2$.get_distance('b')
print("Distances from 'b': \{\}".format(D))
print("All parents: \{\}".format(P))
Distances from 'b': \{'a': 4, 'c': 5, 'f': 1, 'e': 5, 'b': 0, 'd': 4, 'g': 2, 'j': 3, 'h': 6, 'k': inf, 'l': inf\}
All parents: \{'a': 'j', 'c': 'a', 'f': 'b', 'e': 'a', 'b': 'b', 'd': 'j', 'g': 'f', 'j': 'g', 'h':
'e', 'k': -1, 'l': -1\}

BFS: application. Shortest distance/Shortest path

```
printing the shortest path...
def printPath(startN, endN, parents):
    outPath = str(endN)
    #this assumes all the nodes are in the
    #parents structure
    curN = endN
    while curN != startN and curN != -1:
    curN = parents[curN]
    outPath = str(curN) + " --> " + outPath
    if str(curN) != startN:
        return "Not available"
    return outPath
```


BFS: application. Shortest distance/Shortest path

```
printing the shortest path...
def printPath(startN, endN, parents):
    outPath = str(endN)
    #this assumes all the nodes are in the
    #parents structure
    curN = endN
    while curN != startN and curN != -1:
        curN = parents[curN]
        outPath = str(curN) + " --> " + outPath
    if str(curN) != startN:
        return "Not available"
    return outPath
root or nodes not
reached == -1
```

All parents: \{'a': 'a', 'c': 'a', 'f': 'a', 'e': 'a', 'b': 'c', 'd': 'c', 'g': 'f', 'j': 'g', 'h': 'e', 'k': -1, 'l': -1\}

D, $P=$ G2.get_distance('a')

print("Path from 'a' to 'j': \{\}". format(printPath('a','j', P))) print("Path from 'a' to 'k': \{\}". format(printPath('a',' k ', P)))

Path from 'a' to 'j': a --> f --> g --> j
Path from 'a' to ' k ': Not available

BFS: application. Shortest distance/Shortest path

printing the shortest path...

```
def printPath(startN, endN, parents):
    outPath = str(endN)
    #this assumes all the nodes are in the
    #parents structure
    curN = endN
    while curN != startN and curN != -1:
        curN = parents[curN]
        outPath = str(curN) + " --> " + outPath reached == -1
    moot or nodes not
    if str(curN) != startN
        return "Not available"
    return outPath
```


All parents: \{'a': 'j', 'c': 'a', 'f': 'b', 'e': 'a', 'b': 'b', 'd': 'j', 'g': 'f', 'j': 'g', 'h': 'e', 'k': -1, 'l': -1\}

D, $P=$ G2.get_distance('b')
print ("Distances from 'b': \{\}". format(D))
print("All parents: \{\}".format(P))
print("Path from 'b' to 'c': \{\}".format(printPath('b','c', P)))
Path from 'b' to 'c': b --> f --> g --> j --> a --> c

Exercise

What if the shortest path between (a, j) is $j \rightarrow a ? ? ?$

```
def get_shortest_path(self, start, end):
    #your courtesy
    #returns [start, node,.., end]
    #if shortest path is start --> node --> ... --> end
    pass
```


Traversals: Depth First Search (DFS)

Depth-first search

- Often a subroutine of the solution of other problems
- Used to explore the entire graph, not just the nodes reachable from a single source (unlike BFS)

Output

- Instead of a tree, a depth-first forest $G_{f}=\left(V, E_{f}\right)$
- Contains a collection of depth-first trees

Data structure

- Explicit Stack
- Or implicit stack, through recursion

Traversals: Depth First Search (DFS)

Idea:

Visit the first node (mark it as visited)...
... then recursively all its children nodes (follow one path until it ends)

Traversals: Depth First Search (DFS)

Idea:

Visit the first node (mark it as visited)...
... then recursively all its children nodes (follow one path until it ends)

Execution stack:DFS(1)

Traversals: Depth First Search (DFS)

Idea:

Visit the first node (mark it as visited)...
... then recursively all its children nodes (follow one path until it ends)

Execution stack:DFS(1, DFS(2))

Traversals: Depth First Search (DFS)

Idea:

Visit the first node (mark it as visited)...
... then recursively all its children nodes (follow one path until it ends)

Execution stack:DFS(1, DFS(2, DFS(3)))

Traversals: Depth First Search (DFS)

Idea:

Visit the first node (mark it as visited)...
... then recursively all its children nodes (follow one path until it ends)

Execution stack:DFS(1, DFS(2, DFS(3, DFS(4))))

Traversals: Depth First Search (DFS)

Idea:

Visit the first node (mark it as visited)...
... then recursively all its children nodes (follow one path until it ends)

Execution stack:DFS(1, DFS(2, DFS(3)))
DFS(4): nothing to do. Done.

Traversals: Depth First Search (DFS)

Idea:

Visit the first node (mark it as visited)...
... then recursively all its children nodes (follow one path until it ends)

Execution stack:DFS(1, DFS(2, DFS(3, DFS(6))))

Traversals: Depth First Search (DFS)

Idea:

Visit the first node (mark it as visited)...
... then recursively all its children nodes (follow one path until it ends)

Execution stack:DFS(1, DFS(2, DFS(3))))
DFS(6): nothing to do. Done.

Traversals: Depth First Search (DFS)

Idea:

Visit the first node (mark it as visited)...
... then recursively all its children nodes (follow one path until it ends)

Execution stack:DFS(1, DFS(2)))
DFS(3): nothing to do. Done.

Traversals: Depth First Search (DFS)

Idea:

Visit the first node (mark it as visited)...
... then recursively all its children nodes (follow one path until it ends)

Traversals: Depth First Search (DFS)

Idea:

Visit the first node (mark it as visited)...
... then recursively all its children nodes (follow one path until it ends)

Execution stack:DFS(1, DFS(2))
DFS(5): nothing to do. Done.

Traversals: Depth First Search (DFS)

Idea:

Visit the first node (mark it as visited)...
... then recursively all its children nodes (follow one path until it ends)

Execution stack:DFS(1)
DFS(2): nothing to do. Done.

Traversals: Depth First Search (DFS)

Idea:

Visit the first node (mark it as visited)...
... then recursively all its children nodes (follow one path until it ends)

Execution stack: DONE!
DFS(1): nothing to do. Done.

Traversals: Depth First Search (DFS)

Idea:

Visit the first node (mark it as visited)...
... then recursively all its children nodes (follow one path until it ends)

Execution stack: DFS(7)
Done.

Recursive Depth First Search (DFS)

```
def DFS(self, node, visited):
    visited.add(node)
    ## visit node (preorder)
    print("visiting: {}".format(node))
    for u in self.adj(node):
        if u not in visited:
            self.DFS(u, visited)
    ##visit node (post-order)
```

DFS from a:
visiting: a visiting: c visiting: b visiting: f visiting: g visiting: j
visiting: d
visiting: e
visiting: h

Recursive Depth First Search (DFS)

```
def DFS(self, node, visited):
    visited.add(node)
    ## visit node (preorder)
    print("visiting: {}".format(node))
    for u in self.adj(node):
        if u not in visited:
            self.DFS(u, visited)
    ##visit node (post-order)
```

DFS from b : visiting: b visiting: f visiting: g visiting: j visiting: a visiting: c visiting: d
visiting: e
visiting: h

Recursive Depth First Search (DFS)

- To execute a DFS based on recursive calls may be risky in very large graphs
- It is possible that the reached depth is larger than the size of the language stack
- In such cases, you should prefer a BFS or a DFS based on explicit stack

Stack size in Java

Platform	Default
Windows IA32	64 KB
Linux IA32	128 KB
Windows x86_64	128 KB
Linux x86_64	256 KB
Windows IA64	320 KB
Linux IA64	$1024 \mathrm{~KB}(1 \mathrm{MB})$
Solaris Sparc	512 KB

With recursive calls, "unclosed" calls are memorized in the stack and with big graphs this can cause a stack overflow error.

Iterative Depth First Search (DFS)

```
def DFS(self, root):
    #stack implemented as deque
    S = deque()
    S.append(root)
    visited = set()
    while len(S) > 0:
        node = S.pop()
        if not node in visited:
            #visit node in preorder
            print("visiting {}".format(node))
            visited.add(node)
            for n in self.adj(node):
                    #visit edge (node,n)
                    S.append(n)
```

- A node can be inserted in the stack several
times
- The check if a node has been already visited is done at the extraction, not when inserting
- Complexity $O(m+n)$
- $O(m)$ edge visits
- $O(m)$ insert, remove
- $O(n)$ node visits

print("DFS from a:")

 G2.DFS('a') print("DFS from b:") G2.DFS('b')DFS from a: visiting a visiting e visiting h visiting j visiting d visiting b visiting f visiting g visiting c

DFS from b : visiting b visiting f visiting g visiting j visiting d visiting a visiting e visiting h visiting c

Connected graphs and components

Definitions

- An undirected graph $G=(V, E)$ is connected iff every node is reachable from every other node
- An undirected graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a connected component iff G^{\prime} is a connected and maximal subgraph of G
- G^{\prime} is a subgraph of $G\left(G^{\prime} \subseteq G\right)$ iff $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$
- G^{\prime} is maximal iff there is no other graph $G^{\prime \prime}$ of G such that $G^{\prime \prime}$ is connected and larger than G^{\prime} (i.e. $G^{\prime} \subseteq G^{\prime \prime} \subseteq G$)

Connected components

Motivations

- Several algorithms that operate on graphs start by decomposing the graph into disconnected components
- The algorithm is then executed in each of the components
- The results are then composed back together

Definitions

- Connected components (CC), defined on undirected graphs
- Strongly connected components (SCC), defined on directed graphs

Reachability

Reachable

A node v is reachable from a node u if there is at least one path from u to v.

Node d is reachable from node a and vice-versa

Node d is reachable from node A, but not vice-versa

Application of DFS

Problem

- To check whether an undirected graph is connected or not
- To identify its connected components

Solutions

- A graph is connected if, at the end of the DFS, all nodes have been marked
- If not, a single pass is not sufficient; the traversal must start again from an unmarked node, identifying a new component of the graph

Connected components

```
def CC(G):
    ids = dict()
    for node in G.node_iterator():
        ids[node] = 0
    counter = 0
    for u in G.node_iterator():
        if ids[u] == 0:
            counter += 1
            ccdfs(G, counter, u, ids)
    return (counter, ids)
def ccdfs(G, counter, u, ids):
    ids[u] = counter
    for v in G.adj(u):
        if ids[v] == 0:
            ccdfs(G, counter, v, ids)
```


- ids is a list containing the component identifiers (it is also used as 'visited' structure)
- $\quad i d s[u]$ is the identifier of the connected component to which u belongs

Connected components

```
def cc(G):
    ids = dict()
    for node in G.node_iterator():
        ids[node] = 0
    counter = 0
    for u in G.node_iterator():
        if ids[u] == 0:
            counter += 1
            ccdfs(G, counter, u, ids)
    return (counter, ids)
def ccdfs(G, counter, u, ids):
ids[u] = counter
for \(v\) in G.adj(u):
if ids[v] == 0:
ccdfs(G, counter, v, ids)
```


N, con_comp $=c c(m y G)$
print("\{\} connected components:\n\{\}".format(N, con_comp))
3 connected components:
\{'a': 1, 'b': 1, 'c': 1, 'd': 1, 'e': 2, 'g': 2, 'f': 2, 'h': 2, 'i': 2, 'j': 3, 'k': 3\}

Connected components

```
def cc(G):
    ids = dict()
    for node in G.node_iterator():
        ids[node] = 0
    counter = 0
    for u in G.node_iterator():
        if ids[u] == 0:
            counter += 1
            ccdfs(G, counter, u, ids)
    return (counter, ids)
def ccdfs(G, counter, u, ids):
    ids[u] = counter
    for v in G.adj(u):
        if ids[v] == 0:
            ccdfs(G, counter, v, ids)
```


N, con_comp $=c c(m y G)$
print("\{\} connected components: $\backslash n\}$ ".format(N, con_comp))
3 connected components:
\{'a': 1, 'b': 1, 'c': 1, 'd': 1, 'e': 2, 'g': 2, 'f': 2, 'h': 2, 'i': 2, 'j': 3, 'k': 3\}

Connected components

```
def cc(G):
    ids = dict()
    for node in G.node_iterator():
        ids[node] = 0
    counter = 0
    for u in G.node_iterator():
        if ids[u] == 0:
            counter += 1
            ccdfs(G, counter, u, ids)
    return (counter, ids)
def ccdfs(G, counter, u, ids):
ids[u] = counter
for \(v\) in G.adj(u):
if ids[v] == 0:
ccdfs(G, counter, v, ids)
```


N, con_comp $=c c(m y G)$
print("\{\} connected components: $\backslash n\}$ ".format(N, con_comp))
3 connected components:
\{'a': 1, 'b': 1, 'c': 1, 'd': 1, 'e': 2, 'g': 2, 'f': 2, 'h': 2, 'i': 2, 'j': 3, 'k': 3\}

Connected components

```
def cc(G):
    ids = dict()
    for node in G.node_iterator():
        ids[node] = 0
    counter = 0
    for u in G.node_iterator():
        if ids[u] == 0:
            counter += 1
            ccdfs(G, counter, u, ids)
    return (counter, ids)
def ccdfs(G, counter, \(u\), ids):
ids[u] = counter
for \(v\) in G.adj(u):
if ids[v] == 0:
ccdfs(G, counter, v, ids)
```


ids is ! = 0
N, con comp $=c c(m y G)$
print("\{\} connected components: $\backslash n\}$ ".format(N, con_comp))
3 connected components:
\{'a': 1, 'b': 1, 'c': 1, 'd': 1, 'e': 2, 'g': 2, 'f': 2, 'h': 2, 'i': 2, 'j': 3, 'k': 3\}

Connected components

```
def cc(G):
    ids = dict()
    for node in G.node_iterator():
        ids[node] = 0
    counter = 0
    for u in G.node_iterator():
        if ids[u] == 0:
            counter += 1
            ccdfs(G, counter, u, ids)
    return (counter, ids)
def ccdfs(G, counter, u, ids):
ids[u] = counter
for \(v\) in G.adj(u):
if ids[v] == 0:
ccdfs(G, counter, v, ids)
```


N, con_comp $=c c(m y G)$
print("\{\} connected components: $\backslash n\}$ ".format(N, con_comp))
3 connected components:
\{'a': 1, 'b': 1, 'c': 1, 'd': 1, 'e': 2, 'g': 2, 'f': 2, 'h': 2, 'i': 2, 'j': 3, 'k': 3\}

Connected components

```
def cc(G):
    ids = dict()
    for node in G.node_iterator():
        ids[node] = 0
    counter = 0
    for u in G.node_iterator():
        if ids[u] == 0:
            counter += 1
            ccdfs(G, counter, u, ids)
    return (counter, ids)
def ccdfs(G, counter, u, ids):
ids[u] = counter
for \(v\) in G.adj(u):
if ids[v] == 0:
ccdfs(G, counter, v, ids)
```


ids is ! = 0
N, con_comp $=c c(m y G)$
print(" $\}$ connected components: $\backslash n\}$ ".format(N, con_comp))
3 connected components:
\{'a': 1, 'b': 1, 'c': 1, 'd': 1, 'e': 2, 'g': 2, 'f': 2, 'h': 2, 'i': 2, 'j': 3, 'k': 3\}

Connected components

```
def cc(G):
    ids = dict()
    for node in G.node_iterator():
        ids[node] = 0
    counter = 0
    for u in G.node_iterator():
        if ids[u] == 0:
            counter += 1
            ccdfs(G, counter, u, ids)
    return (counter, ids)
def ccdfs(G, counter, u, ids):
    ids[u] = counter
    for v in G.adj(u):
        if ids[v] == 0:
            ccdfs(G, counter, v, ids)
```


N, con comp $=\mathrm{cc}(\mathrm{myG})$

print("\{\} connected components:\n\{\}".format(N, con_comp))

3 connected components:

\{'a': 1, 'b': 1, 'c': 1, 'd': 1, 'e': 2, 'g': 2, 'f': 2, 'h': 2, 'i': 2, 'j': 3, 'k': 3\}

Connected components

```
def CC(G):
    ids = dict()
    for node in G.node_iterator():
        ids[node] = 0
    counter = 0
    for u in G.node_iterator():
        if ids[u] == 0:
            counter += 1
            ccdfs(G, counter, u, ids)
    return (counter, ids)
def ccdfs(G, counter, u, ids):
    ids[u] = counter
    for v in G.adj(u):
        if ids[v] == 0:
            ccdfs(G, counter, v, ids)
ids[u] = counter
for \(v\) in G.adj(u):
ccdfs(G, counter, v, ids)
```


ids is ! $=0$
N, con_comp $=c c(m y G)$
print("\{\} connected components: $\backslash n\}$ ".format(N, con_comp))
3 connected components:
\{'a': 1, 'b': 1, 'c': 1, 'd': 1, 'e': 2, 'g': 2, 'f': 2, 'h': 2, 'i': 2, 'j': 3, 'k': 3\}

Connected components

```
def CC(G):
    ids = dict()
    for node in G.node_iterator():
        ids[node] = 0
    counter = 0
    for u in G.node_iterator():
        if ids[u] == 0:
            counter += 1
            ccdfs(G, counter, u, ids)
    return (counter, ids)
def ccdfs(G, counter, \(u\), ids):
ids[u] = counter
for \(v\) in G.adj(u):
if ids[v] == 0:
ccdfs( \(G\), counter, v, ids)
```


ids is != 0

N, con comp $=\mathrm{cc}(\mathrm{myG})$

print("\{\} connected components: $\backslash n\}$ ".format(N, con_comp))

3 connected components:

\{'a': 1, 'b': 1, 'c': 1, 'd': 1, 'e': 2, 'g': 2, 'f': 2, 'h': 2, 'i': 2, 'j': 3, 'k': 3\}

Connected components

```
def CC(G):
    ids = dict()
    for node in G.node_iterator():
        ids[node] = 0
    counter = 0
    for u in G.node_iterator():
        if ids[u] == 0:
            counter += 1
            ccdfs(G, counter, u, ids)
    return (counter, ids)
def ccdfs(G, counter, u, ids):
    ids[u] = counter
    for v in G.adj(u):
        if ids[v] == 0:
            ccdfs(G, counter, v, ids)
```

call on d
completed

call on d completed

N, con_comp $=c c(m y G)$
print("\{\} connected components:\n\{\}".format(N, con_comp))

3 connected components:

\{'a': 1, 'b': 1, 'c': 1, 'd': 1, 'e': 2, 'g': 2, 'f': 2, 'h': 2, 'i': 2, 'j': 3, 'k': 3\}

Connected components

```
def CC(G):
    ids = dict()
    for node in G.node_iterator():
        ids[node] = 0
    counter = 0
    for u in G.node iterator():
        if ids[u] == 0:
            counter += 1
            ccdfs(G, counter, u, ids)
    return (counter, ids)
def ccdfs(G, counter, u, ids):
    ids[u] = counter
    for v in G.adj(u):
        if ids[v] == 0:
            ccdfs(G, counter, v, ids)
```

call on c,b,a completed in the order The algorithm tries to restart from b,c,d but nodes are visited...

some steps later.. component 1 is done, component 2 starts...

```
N, con comp = cc(myG)
print("{} connected components:\n{}".format(N,con_comp))
```


3 connected components:

\{'a': 1, 'b': 1, 'c': 1, 'd': 1, 'e': 2, 'g': 2, 'f': 2, 'h': 2, 'i': 2, 'j': 3, 'k': 3\}

Connected components

```
def CC(G):
    ids = dict()
    for node in G.node_iterator():
        ids[node] = 0
    counter = 0
    for u in G.node_iterator():
        if ids[u] == 0:
            counter += 1
            ccdfs(G, counter, u, ids)
    return (counter, ids)
def ccdfs(G, counter, \(u\), ids):
ids[u] = counter
for \(v\) in G.adj(u):
if ids[v] == 0:
ccdfs(G, counter, v, ids)
```


N, con_comp $=c c(m y G)$
print("\{\} connected components:\n\{\}".format(N, con_comp))

3 connected components:

\{'a': 1, 'b': 1, 'c': 1, 'd': 1, 'e': 2, 'g': 2, 'f': 2, 'h': 2, 'i': 2, 'j': 3, 'k': 3\}

Definitions

Cycle

In a undirected graph $G=(V, E)$, a cycle C of length $k>2$ is a sequence of nodes $u_{0}, u_{1}, \ldots, u_{k}$ such that $\left(u_{i}, u_{i+1} \in E\right)$ for $0 \leq i \leq$ $k-1$ and $u_{0}=u_{k}$.

$k>2$ is meant to exclude trivial cycles composed by edge pairs (u, v) and (v, u), which are everywhere in undirected graphs

Definitions

Acyclic graph
A undirected graph that does not contain cycles, is called acyclic.

Problem

Given a undirected graph G, write an algorithm that returns true if G contains a cycle, false otherwise.

How would you solve the problem?

Idea: perform a DFS visit, if it finds a node already visited then there is a cycle

Cycle detection: undirected graph

```
def has cycleRec(G, u, from_node, visited):
    visited.add(u)
    for v in G.adj(u):
        if v != from_node: #to avoid trivial cycles
            if v in visited:
            return True
            else:
                #continue with the visit to check
                    #if there are cycles
                    if has_cycleRec(G,v, u, visited):
                        return True
    return False
def has_cycle(G):
    visited = set()
    #I am starting the visit from all nodes
    for node in G.node iterator():
        if node not in visited:
            if has cycleRec(G, node, None, visited):
                return True
    return False
```


Cycle detection: undirected graph

```
def has cycleRec(G, u, from_node, visited):
    visited.add(u)
    for v in G.adj(u):
        if v != from_node: #to avoid trivial cycles
            if v in visited:
            return True
            else:
                    #continue with the visit to check
                    #if there are cycles
                    if has_cycleRec(G,v, u, visited):
                        return True
    return False
def has cycle(G)
    visited = set()
    #I am starting the visit from all nodes
    for node in G.node iterator():
            if node not in visited:
                if has_cycleRec(G, node, None, visited):
                    return True
    return False
```

for u, v in [('a', 'b'), ('b', 'a'), ('b', 'c'), ('c', 'b'), ('c', 'd'),
('d', 'c'), ('c', 'e'),('e', 'c'), ('d','a'),('a','d'),'('e','d'),
myG.insert_edge(u, v)
print(has_cycle(myG))

Cycle detection: undirected graph

```
def has cycleRec(G, u, from_node, visited):
    visited.add(u)
    for v in G.adj(u):
        if v != from_node: #to avoid trivial cycles
            if v in visited:
            return True
            else:
                #continue with the visit to check
                    #if there are cycles
                    if has_cycleRec(G,v, u, visited):
                        return True
    return False
def has_cycle(G):
    visited = set()
    #I am starting the visit from all nodes
    for node in G.node iterator():
            if node not in visited:
                if has cycleRec(G, node, None, visited):
                    return True
    return False
```

myG $=$ Graph $($
for $u, ~ v$ in [('a', 'b'), ('b', 'a'), ('b', 'c'), ('c', 'b'), ('c', 'd'),
('d', 'c'), ('c','e'),('e', 'c'), ('e','d'),
yG.insert_edge(u,v)
print(has_cycle(myG))

Cycle detection: undirected graph

```
def has cycleRec(G, u, from_node, visited):
    visited.add(u)
    for v in G.adj(u):
        if v != from_node: #to avoid trivial cycles
            if v in visited:
            return True
            else:
                #continue with the visit to check
                    #if there are cycles
                    if has_cycleRec(G,v, u, visited):
                        return True
    return False
def has_cycle(G):
    visited = set()
    #I am starting the visit from all nodes
    for node in G.node iterator():
            if node not in visited:
            if has cycleRec(G, node, None, visited):
                    return True
    return False
```

myG $=$ Graph ()
for u, v in [('a', 'b'), ('b', 'a'), ('b', 'c'), ('c', 'b'),
('c','e'),('e','c'), ('e','d'),
('d','e')']:
myG.insert_edge (u,v)
print(has cycle(myG))

Cycle detection: directed graph

Cycle

In a directed graph $G=(V, E)$, a cycle C of length $k \geq 2$ is a sequence of nodes $u_{0}, u_{1}, \ldots, u_{k}$ such that $\left(u_{i}, u_{i+1} \in E\right)$ for $0 \leq i \leq$ $k-1$ and $u_{0}=u_{k}$.

Example: a, b, c, e, d, a is a cycle of length 5

Note: a cycle is called simple if all its nodes are distinct (excluding the first and the last ones)

Directed acyclic graph (DAG)

DAG

A directed acyclic graph (DAG) is a directed graph that does not contain cycles.

Cyclic graph

A graph containing a cycle is called cyclic

Cycle detection

Problem

Given a directed graph G, write an algorithm that returns true if G contains a cycle, false otherwise.

Problem

Can you draw a directed graph such that the algorithm we have seen before does not return the correct answer?

Cycle detection

Problem

Given a directed graph G, write an algorithm that returns true if G contains a cycle, false otherwise.

Problem

Can you draw a directed graph such that the algorithm we have seen before does not return the correct answer?

visit a

Cycle detection

Problem

Given a directed graph G, write an algorithm that returns true if G contains a cycle, false otherwise.

Problem

Can you draw a directed graph such that the algorithm we have seen before does not return the correct answer?

visit b

Cycle detection

Problem

Given a directed graph G, write an algorithm that returns true if G contains a cycle, false otherwise.

Problem

Can you draw a directed graph such that the algorithm we have seen before does not return the correct answer?

visit c

Cycle detection

Problem

Given a directed graph G, write an algorithm that returns true if G contains a cycle, false otherwise.

Problem

Can you draw a directed graph such that the algorithm we have seen before does not return the correct answer?

back from a to c

Edge classification

DFS Spanning Tree

Whenever an edge connecting a marked node to an unmarked one, it is inserted into a tree T

Every edge (u, v) not included in T belongs to one of three categories
edges part of the DFS visit

- (u, v) is a forward edge iff v is a descendent of u in $T \ldots$
- (u, v) is a back edge iff v is an ancestor of u in T -
- Otherwise, (u, v) is a cross edge

Edge classification

clock $=0$
def dfs schema(G, node, dt, ft):
dt = dict()
\#clōk: visit time (global variable)
df = dict()
\#dt: discovery time
\#ft: finish time
global clock

clock is increased by one at each operation
clock += 1
dt[node] = clock
print("Start time \{\}: \{\}".format(node, clock))
for node in G.node_iterator() :
$\mathrm{dt}[$ node] $=0$
for v in G.adj(node):
if $d t[v]==0$:
\#DFS VISIT edge
\#visit the edge (node, v)
print("\tDFS edge: \{\} --> \{\}".format(node, v))
dfs schema(G,v, dt, ft)
elif $d t[$ node] $>d t[v]$ and $f t[v]==0$:
\#BACK EDGE
\#visit the back edge (node,v)
print("\tBack edge: $\}-->\{ \}$ ".format(node,v))
elif dt[node] < dt[v] and $\mathrm{ft}[\mathrm{v}]$!= 0:
\#FORWARD EDGE
\#visit the forward edge (node, v)
print("\tForward edge: \{\}--> \{\}".format(node, v))
else:
\#CROSS EDGE
print("\tCross edge: $\}$--> $\}$ ". format(node, v))
clock $+=1$ increase the time and set the finish time of node
ft[node] = clock
print("Finish time \{\}: \{\}".format(node,clock))
return dt,ft

```
s,e = dfs schema(G,'a', dt, df)
s,e = dfs_schema(G,'e', dt, df)
print("Discovery times:{}".format(s))
print("Finish times: {}".format(e))
```

DFS edge Forward edge Back edge Cross edge if $d t[v]==0 \rightarrow$ equals to v NOT visited

perform a DFS visit NT

$$
\text { df[node] }=0
$$

Edge classification

clock $=0$
def dfs schema(G, node, dt, ft):
\#clōk: visit time (global variable)
\#dt: discovery time
\#ft: finish time
global clock
clock += 1
dt[node] = clock
print("Start time \{\}: \{\}".format(node, clock))
for v in G.adj(node):
if $\mathrm{dt}[\mathrm{v}]==0$:
\#DFS VISIT edge
\#visit the edge (node, v)
print("\tDFS edge: \{\} --> \{\}".format(node, v))
dfs schema(G,v, dt, ft)
elif $d t[$ node] $>d t[v]$ and $f t[v]==0$:
\#BACK EDGE
\#visit the back edge (node,v)
print("\tBack edge: \{\}--> \{\}".format(node,v))
elif $d t[$ node $\ll d t[v]$ and $f t[v]!=0$:
\#FORWARD EDGE
\#visit the forward edge (node, v)
print("\tForward edge: \{\}--> \{\}".format(node, v))
else:
\#CROSS EDGE
print("\tCross edge: \{\} --> \{\}".format(node, v))
clock += 1
ft[node] = clock
print("Finish time \{\}: \{\}".format(node,clock))
return dt,ft


```
s,e = dfs schema(G,'a', dt, df)
s,e = dfs_schema(G,'e', dt, df)
print("Discovery times:{}".format(s))
print("Finish times: {}".format(e))
```


Edge classification

clock $=0$
def dfs schema(G, node, dt, ft):
\#clōk: visit time (global variable)
\#dt: discovery time
\#ft: finish time
global clock
clock += 1
dt[node] = clock
print("Start time \{\}: \{\}".format(node, clock))
Start time a: 1
DFS edge: a --> b
for v in G.adj(node):
if $\mathrm{dt}[\mathrm{v}]=0$:
\#DFS VISIT edge
\#visit the edge (node, v)
print("\tDFS edge: \{\} --> \{\}".format(node, v))
dfs schema(G,v, dt, ft)
elif $d t[$ node] $>d t[v]$ and $f t[v]==0$:
\#BACK EDGE
\#visit the back edge (node,v)
print("\tBack edge: \{\}--> \{\}".format(node, v))
elif dt[node] < dt[v] and $\mathrm{ft}[\mathrm{v}]$!= 0:
\#FORWARD EDGE
\#visit the forward edge (node, v)
print("\tForward edge: \{\}--> \{\}".format(node, v))
else:
\#CROSS EDGE
print("\tCross edge: \{\} --> \{\}".format(node, v))
clock += 1
ft[node] = clock
print("Finish time \{\}: \{\}".format(node,clock))
return dt,ft

DFS edge Forward edge Back edge Cross edge

Edge classification

clock $=0$
def dfs schema(G, node, dt, ft):
\#clōk: visit time (global variable)
\#dt: discovery time
\#ft: finish time
global clock
clock += 1
dt[node] = clock
print("Start time \{\}: \{\}".format(node, clock))
for v in G.adj(node):
if $d t[v]==0$:
\#DFS VISIT edge
\#visit the edge (node, v)
print("\tDFS edge: \{\} --> \{\}". format(node, v))
dfs schema(G,v, dt, ft)
elif $d t[$ node] $>d t[v]$ and $f t[v]==0$:
\#BACK EDGE
\#visit the back edge (node,v)
print("\tBack edge: \{\}--> \{\}".format(node,v))
elif dt[node] < dt[v] and $\mathrm{ft}[\mathrm{v}]$!= 0:
\#FORWARD EDGE
\#visit the forward edge (node, v)
print("\tForward edge: \{\}--> \{\}".format(node, v))
else:
\#CROSS EDGE
print("\tCross edge: \{\} --> \{\}".format(node, v))
clock += 1
ft[node] = clock
print("Finish time \{\}: \{\}".format(node,clock))
return dt,ft

DFS edge Forward edge Back edge Cross edge

Start time a: 1
DFS edge: a --> b
Start time b: 2


```
s,e = dfs schema(G,'a', dt, df)
s,e = dfs_schema(G,'e', dt, df)
print("Discovery times:{}".format(s))
print("Finish times: {}".format(e))
```


Edge classification

clock $=0$
def dfs schema(G, node, dt, ft):
\#clōk: visit time (global variable)
\#dt: discovery time
\#ft: finish time
global clock
clock += 1
dt[node] = clock
print("Start time \{\}: \{\}".format(node, clock))
for v in G.adj(node):

if $d t[v]==0:$

\qquad
\#DFS VISIT edge
\#visit the edge (node, v)
print("\tDFS edge: \{\} --> \{\}".format(node, v))
dfs schema(G,v, dt, ft)
elif $d t[$ node] $>d t[v]$ and $f t[v]==0$:
\#BACK EDGE
\#visit the back edge (node,v)
print("\tBack edge: \{\}--> \{\}".format(node,v))
elif dt[node] < dt[v] and $\mathrm{ft}[\mathrm{v}]!=0$:
\#FORWARD EDGE
\#visit the forward edge (node, v)
print("\tForward edge: \{\}--> \{\}".format(node, v))
else:
\#CROSS EDGE
print("\tCross edge: \{\} --> \{\}".format(node, v))
clock += 1
ft[node] = clock
print("Finish time \{\}: \{\}".format(node,clock))
return dt,ft

DFS edge Forward edge Back edge Cross edge

Start time a: 1
DFS edge: a --> b

Start time b: 2

DFS edge: b --> c


```
s,e = dfs schema(G,'a', dt, df)
s,e = dfs_schema(G,'e', dt, df)
print("Discovery times:{}".format(s))
print("Finish times: {}".format(e))
```


Edge classification

clock $=0$
def dfs schema(G, node, dt, ft):
\#clōk: visit time (global variable)
\#dt: discovery time
\#ft: finish time
global clock
clock += 1
dt[node] = clock
print("Start time \{\}: \{\}".format(node, clock))
for v in G.adj(node):
if $d t[v]==0$:
\#DFS VISIT edge
\#visit the edge (node, v)
print("\tDFS edge: \{\} --> \{\}". format(node, v))
dfs schema(G,v, dt, ft)
elif $d t[$ node] $>d t[v]$ and $f t[v]==0$:
\#BACK EDGE
\#visit the back edge (node,v)
print("\tBack edge: \{\}--> \{\}".format(node,v))
elif dt[node] < dt[v] and $\mathrm{ft}[\mathrm{v}]$!= 0:
\#FORWARD EDGE
\#visit the forward edge (node, v)
print("\tForward edge: \{\}--> \{\}".format(node, v))
else:
\#CROSS EDGE
print("\tCross edge: \{\} --> \{\}".format(node, v))
clock += 1
ft[node] = clock
print("Finish time \{\}: \{\}".format(node,clock))
return dt,ft

DFS edge Forward edge Back edge Cross edge

Start time a: 1
DFS edge: a --> b
Start time b: 2
DFS edge: b --> c
Start time c: 3


```
s,e = dfs schema(G,'a', dt, df)
s,e = dfs_schema(G,'e', dt, df)
print("Discovery times:{}".format(s))
print("Finish times: {}".format(e))
```


Edge classification

clock $=0$
def dfs schema(G, node, dt, ft):
\#clōk: visit time (global variable)
\#dt: discovery time
\#ft: finish time
global clock
clock += 1
dt[node] = clock
print("Start time \{\}: \{\}".format(node, clock))
for v in G.adj(node):
if $d t[v]==0$:
\#DFS VISIT edge
\#visit the edge (node, v)
print("\tDFS edge: \{\} --> \{\}".format(node, v))
dfs schema(G,v, dt, ft)
elif $d t[$ node] $>d t[v]$ and $f t[v]==0$:
\#BACK EDGE
\#visit the back edge (node,v)
print("\tBack edge: \{\}--> \{\}".format(node,v))
elif dt[node] < dt[v] and $\mathrm{ft}[\mathrm{v}]$!= 0:
\#FORWARD EDGE
\#visit the forward edge (node, v)
print("\tForward edge: \{\}--> \{\}".format(node, v))
else:
\#CROSS EDGE
print("\tCross edge: \{\} --> \{\}".format(node, v))
clock += 1
ft[node] = clock
print("Finish time \{\}: \{\}". format(node,clock))
return dt,ft

Start time a: 1
DFS edge: a --> b
Start time b: 2
DFS edge: b --> c
Start time c: 3
Finish time c: 4
$[3,4]$


```
s,e = dfs schema(G,'a', dt, df)
s,e = dfs_schema(G,'e', dt, df)
print("Discovery times:{}".format(s))
print("Finish times: {}".format(e))
```

DFS edge Forward edge Back edge Cross edge

Edge classification

clock $=0$
def dfs schema(G, node, dt, ft):
\#clōk: visit time (global variable)
\#dt: discovery time
\#ft: finish time
global clock
clock += 1
dt[node] = clock
print("Start time \{\}: \{\}".format(node, clock))
for v in G.adj(node):
if $d t[v]==0$:
\#DFS VISIT edge
\#visit the edge (node, v)
print("\tDFS edge: \{\} --> \{\}".format(node, v))
dfs schema(G,v, dt, ft)
elif $d t[$ node] $>d t[v]$ and $f t[v]==0$:
\#BACK EDGE
\#visit the back edge (node,v)
print("\tBack edge: $\}-->\{ \}$ ".format(node, v))
elif dt[node] < dt[v] and $\mathrm{ft}[\mathrm{v}]$!= 0:
\#FORWARD EDGE
\#visit the forward edge (node, v)
print("\tForward edge: \{\}--> \{\}".format(node, v))
else:
\#CROSS EDGE
print("\tCross edge: \{\} --> \{\}".format(node, v))
clock += 1
ft[node] = clock
print("Finish time \{\}: \{\}".format(node,clock))
return dt,ft

DFS edge

Start time c: 3
Finish time c: 4
Finish time b: 5

```
s,e = dfs schema(G,'a', dt, df)
s,e = dfs_schema(G,'e', dt, df)
print("Discovery times:{}".format(s))
print("Finish times: {}".format(e))
```


Edge classification

clock $=0$
def dfs schema(G, node, it, ft):
\#clōk: visit time (global variable)
\#dt: discovery time
\#ft: finish time
global clock
clock += 1
dt [node] $=$ clock
print("Start time \{\}: \{\}".format(node, clock))
for v in G.adj(node):
if $d t[v]==0$:
\#DFS VISIT edge
\#visit the edge (node, v)
print ("\tDFS edge: \{\} ~ - - > ~ \ { \ } " . f o r m a t (n o d e , ~ v)) ~
dfs schema (G,v, it, ft)
elif $d t[$ node] $>d t[v]$ and $f t[v]==0$:
\#BACK EDGE
\#visit the back edge (node,v)
print("\tBack edge: $\}-->\{ \}$ ".forma t(node, v))
elif dt[node] < dt[v] and $\mathrm{ft}[\mathrm{v}]$!= 0:
\#FORWARD EDGE
\#visit the forward edge (node, v)
print("\tForward edge: \{\}--> \{\}".format(node, v))
else:
\#CROSS EDGE
print("\tCross edge: \{\} --> \{\}".format(node, v))
clock += 1
ft[node] = clock
print("Finish time \{\}: \{\}".format(node,clock))
return lt, ft

DFS edge Forward edge
Back edge Cross edge

Start time a: 1

DFS edge: a --> b

Start time b: 2

DFS edge: b--> c
Start time c: 3
Finish time c: 4
Finish time b: 5
Forward edge: a--> c

[^0]

Edge classification

clock $=0$
def dfs schema(G, node, dt, ft):
\#clōk: visit time (global variable)
\#dt: discovery time
\#ft: finish time
global clock
clock += 1
dt[node] = clock
print("Start time \{\}: \{\}".format(node, clock))
for v in G.adj(node):
if $d t[v]==0$:
\#DFS VISIT edge
\#visit the edge (node, v)
print("\tDFS edge: $\}$--> \{\}". format(node, v)
dfs schema(G,v, dt, ft)
elif $d t[$ node] $>d t[v]$ and $f t[v]==0$:
\#BACK EDGE
\#visit the back edge (node,v)
print("\tBack edge: $\}-->\{ \}$ ".format(node, v))
elif dt[node] < dt[v] and $\mathrm{ft}[\mathrm{v}]$!= 0:
\#FORWARD EDGE
\#visit the forward edge (node, v)
print("\tForward edge: \{\}--> \{\}".format(node, v))
else:
\#CROSS EDGE
print("\tCross edge: \{\} --> \{\}".format(node, v))
clock += 1
ft[node] = clock
print("Finish time \{\}: \{\}".format(node,clock))
return dt,ft

DFS edge Forward edge
Back edge Cross edge
tart time a: 1
DFS edge: a --> b
Start time b: 2
DFS edge: b --> c
Start time c: 3
Finish time c: 4
Finish time b: 5
Forward edge: a--> c
DFS edge: a --> d

```
s,e = dfs schema(G,'a', dt, df)
s,e = dfs_schema(G,'e', dt, df)
print("Discovery times:{}".format(s))
print("Finish times: {}".format(e))
```


Edge classification
 clock $=0$

def dfs schema(G, node, dt, ft):
\#clōk: visit time (global variable)
\#dt: discovery time
\#ft: finish time
global clock
clock += 1
dt[node] = clock
print("Start time \{\}: \{\}".format(node, clock))
for v in G.adj(node):
if $d t[v]==0$:
\#DFS VISIT edge
\#visit the edge (node, v)
print("\tDFS edge: \{\} --> \{\}". format(node, v))
dfs schema(G,v, dt, ft)
elif $d t[$ node] $>d t[v]$ and $f t[v]==0$:
\#BACK EDGE
\#visit the back edge (node,v)
print("\tBack edge: \{\}--> \{\}".format(node, v))
elif dt[node] < dt[v] and $\mathrm{ft}[\mathrm{v}]$!= 0:
\#FORWARD EDGE
\#visit the forward edge (node, v)
print("\tForward edge: \{\}--> \{\}".format(node, v))
else:
\#CROSS EDGE
print("\tCross edge: $\}$--> $\}$ ".format(node, v))
clock += 1
ft[node] = clock
print("Finish time \{\}: \{\}".format(node,clock))
return dt,ft

Start time a: 1
DFS edge: a --> b
Start time b: 2
DFS edge: b --> c
Start time c: 3
Finish time c: 4
Finish time b: 5

Start time d: 6

```
s,e = dfs schema(G,'a', dt, df)
s,e = dfs_schema(G,'e', dt, df)
print("Discovery times:{}".format(s))
print("Finish times: {}".format(e))
```

DFS edge Forward edge
Back edge Cross edge

Edge classification
 clock $=0$

def dfs schema(G, node, dt, ft):
\#clōk: visit time (global variable)
\#dt: discovery time
\#ft: finish time
global clock
clock += 1
dt[node] = clock
print("Start time \{\}: \{\}".format(node, clock))
for v in G.adj(node):
if $d t[v]==0$:
\#DFS VISIT edge
\#visit the edge (node, v)
print("\tDFS edge: \{\} --> \{\}".format(node, v))
dfs schema(G,v, dt, ft)
elif $d t[$ node] $>d t[v]$ and $f t[v]==0$:
\#BACK EDGE
\#visit the back edge (node, v)
print("\tBack edge: $\}-->\{ \}$ ".format(node, v))
elif dt[node] < dt[v] and $\mathrm{ft}[\mathrm{v}]$!= 0:
\#FORWARD EDGE
\#visit the forward edge (node, v)
print("\tForward edge: \{\}--> \{\}".format(node, v))
else:
\#CROSS EDGE
print("\tCross edge: \{\} --> \{\}".format(node, v))
clock += 1
ft[node] = clock
print("Finish time \{\}: \{\}".format(node,clock))
return dt,ft

Start time a: 1
DFS edge: a --> b
Start time b: 2
DFS edge: b --> c
Start time c: 3
Finish time c: 4
Finish time b: 5 Forward edge: a--> c DFS edge: a --> d

Start time d: 6

Back edge: d--> a

DFS edge Forward edge
Back edge Cross edge

[^1]

Edge classification

clock $=0$
def dfs schema(G, node, dt, ft):
\#clōk: visit time (global variable)
\#dt: discovery time
\#ft: finish time
global clock
clock += 1
dt[node] = clock
print("Start time \{\}: \{\}".format(node, clock))
for v in G.adj(node):
if $d t[v]==0$:
\#DFS VISIT edge
\#visit the edge (node, v)
print("\tDFS edge: \{\} --> \{\}".format(node, v))
dfs schema(G,v, dt, ft)
elif $d t[$ node] $>d t[v]$ and $f t[v]==0$:
\#BACK EDGE
\#visit the back edge (node, v)
print("\tBack edge: \{\}--> \{\}".format(node,v))
elif dt[node] < dt[v] and $\mathrm{ft}[\mathrm{v}]$!= 0:
\#FORWARD EDGE
\#visit the forward edge (node, v)
print("\tForward edge: \{\}--> \{\}".format(node, v))
else:
\#CROSS EDGE
print("\tCross edge: $\}$--> $\}$ ".format(node, v))
Start time a: 1
Start time b: 2
Start time c: 3
Finish time c: 4
Finish time b: 5

Start time d: 6

DFS edge: a --> b
DFS edge: b --> c

Forward edge: a--> c
DFS edge: a --> d

Back edge: d--> a
Cross edge: d --> b
DFS edge Forward edge
Back edge Cross edge

$+=1$
ft[node] = clock
print("Finish time \{\}: \{\}".format(node,clock))
return dt,ft

```
s,e = dfs schema(G,'a', dt, df)
s,e = dfs_schema(G,'e', dt, df)
print("Discovery times:{}".format(s))
print("Finish times: {}".format(e))
```


Edge classification
 clock $=0$

def dfs schema(G, node, dt, ft):
\#clōk: visit time (global variable)
\#dt: discovery time
\#ft: finish time
global clock
clock += 1
dt[node] = clock
print("Start time \{\}: \{\}".format(node, clock))
for v in G.adj(node):
if $d t[v]==0$:
\#DFS VISIT edge
\#visit the edge (node, v)
print("\tDFS edge: \{\} --> \{\}".format(node, v))
dfs schema(G,v, dt, ft)
elif $d t[$ node] $>d t[v]$ and $f t[v]==0$:
\#BACK EDGE
\#visit the back edge (node,v)
print("\tBack edge: \{\}--> \{\}".format(node,v))
elif dt[node] < dt[v] and $\mathrm{ft}[\mathrm{v}]$!= 0:
\#FORWARD EDGE
\#visit the forward edge (node, v)
print("\tForward edge: \{\}--> \{\}".format(node, v))
else:
\#CROSS EDGE
print("\tCross edge: $\}$--> $\}$ ". format(node, v))
clock += 1
ft[node] = clock
print("Finish time \{\}: \{\}".format(node,clock))
return dt,ft

Start time a: 1
DFS edge: a --> b
Start time b: 2
DFS edge: b--> c
Start time c: 3
Finish time c: 4
Finish time b: 5 Forward edge: a--> c DFS edge: a --> d

Start time d: 6

Back edge: d--> a Cross edge: d --> b
Finish time d: 7

$[6,7]$

[^2]
Edge classification
 clock $=0$

def dfs schema(G, node, dt, ft):
\#clōk: visit time (global variable)
\#dt: discovery time
\#ft: finish time
global clock
clock += 1
dt[node] = clock
print("Start time \{\}: \{\}".format(node, clock))
for v in G.adj(node):
if $d t[v]==0$:
\#DFS VISIT edge
\#visit the edge (node, v)
print("\tDFS edge: \{\} --> \{\}".format(node, v))
dfs schema(G,v, dt, ft)
elif $d t[$ node] $>d t[v]$ and $f t[v]==0$:
\#BACK EDGE
\#visit the back edge (node,v)
print("\tBack edge: \{\}--> \{\}".format(node,v))
elif dt[node] < dt[v] and $\mathrm{ft}[\mathrm{v}]$!= 0:
\#FORWARD EDGE
\#visit the forward edge (node, v)
print("\tForward edge: \{\}--> \{\}".format(node, v))
else:
\#CROSS EDGE
print("\tCross edge: $\}$--> $\}$ ".format(node, v))
clock += 1
ft[node] = clock
print("Finish time \{\}: \{\}".format(node,clock))
return dt,ft

Start time a: 1
DFS edge: a --> b
Start time b: 2
DFS edge: b--> c
Start time c: 3
Finish time c: 4
Finish time b: 5 Forward edge: a--> c
DFS edge: a --> d
Start time d: 6
Back edge: d--> a
Cross edge: d --> b
Finish time d: 7
Finish time a: 8

```
s,e = dfs schema(G,'a', dt, df)
s,e = dfs_schema(G,'e', dt, df)
print("Discovery times:{}".format(s))
print("Finish times: {}".format(e))
```

DFS edge Forward edge Back edge Cross edge

Edge classification

clock $=0$
def dfs schema(G, node, dt, ft):
\#clōk: visit time (global variable)
\#dt: discovery time
\#ft: finish time
global clock
clock += 1
dt[node] = clock
print("Start time \{\}: \{\}".format(node, clock))

```
for v in G.adj(node):
    if dt[v] == 0:
        #DFS VISIT edge
        #visit the edge (node,v)
        print("\tDFS edge: {} --> {}".format(node, v))
        dfs schema(G,v, dt, ft)
    elif dt[node] > dt[v] and ft[v] == 0:
        #BACK EDGE
        #visit the back edge (node,v)
        print("\tBack edge: {}--> {}".format(node,v))
    elif dt[node] < dt[v] and ft[v] != 0:
        #FORWARD EDGE
        #visit the forward edge (node,v)
        print("\tForward edge: {}--> {}".format(node,v))
    else:
        #CROSS EDGE
        print("\tCross edge: {} --> {}".format(node,v))
    clock += 1
    ft[node] = clock
    print("Finish time {}: {}".format(node,clock))
    return dt,ft
```


Start time a: 1

DFS edge: a --> b

Start time b: 2
DFS edge: b --> c

Start time c: 3
Finish time c: 4
Finish time b: 5 Forward edge: a--> c DFS edge: a --> d
Start time d: 6
Back edge: d--> a Cross edge: d --> b
Finish time d: 7
Finish time a: 8
Start time e: 9

```
s,e = dfs schema(G,'a', dt, df)
s,e = dfs schema(G,'e', dt, df)
print("Discovery times:{}".format(s))
print("Finish times: {}".format(e))
```

DFS edge Forward edge Back edge Cross edge
 ,

Edge classification
 clock $=0$

def dfs schema(G, node, dt, ft):
\#clōk: visit time (global variable)
\#dt: discovery time
\#ft: finish time
global clock
clock += 1
dt[node] = clock
print("Start time \{\}: \{\}".format(node, clock))
for v in G.adj(node):
if $d t[v]==0$:
\#DFS VISIT edge
\#visit the edge (node, v)
print("\tDFS edge: \{\} --> \{\}".format(node, v))
dfs schema(G,v, dt, ft)
elif $d t[$ node] $>d t[v]$ and $f t[v]==0$:
\#BACK EDGE
\#visit the back edge (node,v)
print("\tBack edge: \{\}--> \{\}".format(node,v))
elif dt[node] < dt[v] and $\mathrm{ft}[\mathrm{v}]$!= 0 :
\#FORWARD EDGE
\#visit the forward edge (node, v)
print("\tForward edge: \{\}--> \{\}".format(node, v))
else:
\#CROSS EDGE
print("\tCross edge: $\}$--> $\}$ ". format(node, v))
clock += 1
ft[node] = clock
print("Finish time \{\}: \{\}".format(node,clock))
return dt,ft

Start time a: 1
DFS edge: a --> b
Start time b: 2
DFS edge: b--> c
Start time c: 3
Finish time c: 4
Finish time b: 5 Forward edge: a--> c
DFS edge: a --> d
Start time d: 6
Back edge: d--> a
Cross edge: d --> b
Finish time d: 7
Finish time a: 8
Start time e: 9
Cross edge: e --> c

```
s,e = dfs schema(G,'a', dt, df)
s,e = dfs_schema(G,'e', dt, df)
print("Discovery times:{}".format(s))
print("Finish times: {}".format(e))
```

DFS edge Forward edge Back edge Cross edge

d)

Edge classification
 clock $=0$

def dfs schema(G, node, dt, ft):
\#clōk: visit time (global variable)
\#dt: discovery time
\#ft: finish time
global clock
clock += 1
dt [node] $=$ clock
print("Start time \{\}: \{\}".format(node, clock))
for v in G.adj(node):
if $d t[v]==0$:
\#DFS VISIT edge
\#visit the edge (node, v)
print("\tDFS edge: \{\} --> \{\}".format(node, v))
dfs schema(G,v, dt, ft)
elif $d t[$ node] $>d t[v]$ and $f t[v]==0$:
\#BACK EDGE
\#visit the back edge (node, v)
print("\tBack edge: \{\}--> \{\}".format(node, v))
elif dt[node] < dt[v] and $\mathrm{ft}[\mathrm{v}]$!= 0:
\#FORWARD EDGE
\#visit the forward edge (node, v)
print("\tForward edge: \{\}--> \{\}".format(node, v))
else:
\#CROSS EDGE
print("\tCross edge: $\}$--> $\}$ ". format(node, v))
clock += 1
ft[node] = clock
print("Finish time \{\}: \{\}".format(node,clock))
return dt,ft

Start time a: 1
DFS edge: a --> b
Start time b: 2
DFS edge: b--> c
Start time c: 3
Finish time c: 4
Finish time b: 5
Forward edge: a--> c
DFS edge: a --> d
Start time d: 6
Back edge: d--> a
Cross edge: d --> b
Finish time d: 7
Finish time a: 8
Start time e: 9
Cross edge: e --> c

Finish time e: 10
Discovery times:\{'a': 1, 'b': 2, 'c': 3, 'd': 6, 'e': 9\}
Finish times: \{'a': 8, 'b': 5, 'c': 4, 'd': 7, 'e': 10\}

```
s,e = dfs schema(G,'a', dt, df)
s,e = dfs_schema(G,'e', dt, df)
print("Discovery times:{}".format(s))
print("Finish times: {}".format(e))
```

DFS edge Forward edge Back edge Cross edge

Edge classification

We can prove properties on the type of edges and use these properties to build better algorithms

Theorem

In each DFS visit of a graph $G=(V, E)$, for each pair of nodes $u, v \in V$, only one of the following conditions is true:

- The intervals $[d t[u], f t[u]]$ e $[d t[v], f t[v]]$ are non-overlapping; u, v are not descendant of each other in the DF forest
- Interval $[d t[u], f t[u]]$ is completely contained in $[d t[v], f t[v]]$; u is descendant of v in a DF tree
- Interval $[d t[v], f t[v]]$ is completely contained in $[d t[u], f t[u]]$; v is descendant of u in a DF tree

NOTE in the DFS visit:
$[1,8]$ completely contains $[2,5] \rightarrow B$ descends from A
$[1,8]$ completely contains $[3,4] \rightarrow C$ descends from A
[9,10] does not overlap $[2,5],[6,7] \rightarrow$ E-B E-D are not descendans
Intervals describe the relationship between nodes

Cycle detection

Theorem

A graph G contains a cycle if a back edge is found when a DFS is performed on G.

Informal proof

- if: If there is a cycle, let u be the first node of it that is visited. Given that u belongs to the cycle, there is an edge (v, u) in the cycle. Given that v belongs to the cycle, there is a path from u to v. So (v, u) is a back edge.
- only if: if there is a back edge (u, v), where v is an ancestor of u, then there is a path from v to u and an edge from u to v, thus there is a cycle.

Cycle detection

Theorem

A graph G contains a cycle if a back edge is found when a DFS is performed on G.

Informal proof

- if: If there is a cycle, let u be the first node of it that is visited. Given that u belongs to the cycle, there is an edge (v, u) in the cycle. Given that v belongs to the cycle, there is a path from u to v. So (v, u) is a back edge.
- only if: if there is a back edge (u, v), where v is an ancestor of u, then there is a path from v to u and an edge from u to v, thus there is a cycle.

Cycle detection

Theorem

A graph G contains a cycle if a back edge is found when a DFS is performed on G.

Informal proof

- if: If there is a cycle, let u be the first node of it that is visited. Given that u belongs to the cycle, there is an edge (v, u) in the cycle. Given that v belongs to the cycle, there is a path from u to v. So (u, v) is a back edge.
- only if: if there is a back edge (u, v), where v is an ancestor of u, then there is a path from v to u and an edge from u to v, thus there is a cycle.

NO Cycle!

Tree edge $\quad d t[v]==0$
Back edge: $\quad d t[u]>d t[v]$ and $f t[v]=0$
Forward edge: $\quad d t[u]<d t[v]$ and $f t[v] \neq 0$
Cross edge: otherwise

Cycle detection

Theorem

A graph G contains a cycle if a back edge is found when a DFS is performed on G.

Cycle!

Informal proof

- if: If there is a cycle, let u be the first node of it that is visited. Given that u belongs to the cycle, there is an edge (v, u) in the cycle. Given that v belongs to the cycle, there is a path from u to v. So (u, v) is a back edge.
- only if: if there is a back edge (u, v), where v is an ancestor of u, then there is a path from v to u and an edge from u to v, thus there is a cycle.

Tree edge
Back edge: Forward edge: Cross edge:
$d t[v]==0$
$d t[u]>d t[v]$ and $f t[v]=0$
$d t[u]<d t[v]$ and $f t[v] \neq 0$ otherwise

Cycle detection: the code

```
def detect cycle(G):
    dt = dict()
    ft = dict()
    global clock
    def has_cycle(G, node, dt, ft):
        #clock: visit time (global variable)
        #dt: discovery time
        #ft: finish time
    global clock
    clock += 1
    dt[node] = clock
    for v in G.adj(node):
        if dt[v] == 0:
            #DFS VISIT edge
            if has cycle(G,v, dt, ft):
                return True
            elif dt[node] > dt[v] and ft[v] == 0:
                    #BACK EDGE
            #CYCLE FOUND!!!
            print("Back edge: {} --> {}".format(node,v))
            return True
        ## Note we are not interested
        ## in forward and cross edges
    clock += 1
    ft[node] = clock
    return False
    for node in G.node_iterator():
    dt[node] = 0
    ft[node] = 0
clock = 1
for u in G.node iterator():
    if ft[u] == 0:
            if has cycle(G,u, dt, ft):
            return True
return False
```

simplified version of the code seen before. We just care about forward and back edges

Back edge: c --> a Does G have a cycle? True

Comment on edge classification

DFS edge Forward edge
Back edge Cross edge

Tree edge $\quad d t[v]==0$
Back edge: $\quad d t[u]>d t[v]$ and $f t[v]=0$
Forward edge: $\quad d t[u]<d t[v]$ and $f t[v] \neq 0$
Cross edge: otherwise

1. if $\mathrm{dt}[\mathrm{v}]==0$, it is the first time we see v in the DFS search. DFS Tree edge!
2. if $d t[u]>d t[v]$ the DFS search found u after v and since the DFS visit started from v is not complete ($\mathrm{ft}[\mathrm{v}]=0$), v is a descendant of u [Path: $v \Rightarrow X \rightarrow u$]. Back edge!
3. if $d t[u]<d t[v]$ the DFS search found v after u, therefore v descends from u. Since the visit of v is complete (ft[v] != 0) this is a Forward edge! [Path: u $\rightarrow \mathrm{Y} \rightarrow \mathrm{v}$]

Comment on edge classification

DFS edge Forward edge
Back edge Cross edge

Tree edge $\quad d t[v]==0$
Back edge: $\quad d t[u]>d t[v]$ and $f t[v]=0$
Forward edge: $\quad d t[u]<d t[v]$ and $f t[v] \neq 0$
Cross edge: otherwise

1. if $\mathrm{dt}[\mathrm{v}]==0$, it is the first time we see v in the DFS search. DFS Tree edge!
2. if $d t[u]>d t[v]$ the DFS search found u after v and since the DFS visit started from v is not complete ($\mathrm{ft}[\mathrm{v}]=0$), v is a descendant of u.
[Path: $\mathrm{v} \rightarrow \mathrm{X} \rightarrow \mathrm{u}$]. Back edge!
3. if $d t[u]<d t[v]$ the $D F S$ search found v after u, therefore v descends from u. Since the visit of v is complete ($\mathrm{ft}[\mathrm{v}]$! $=0$) this is a Forward edge! [Path: u $\rightarrow \mathrm{Y} \rightarrow \mathrm{v}$]

Comment on edge classification

DFS edge Forward edge
Back edge Cross edge

Tree edge $\quad d t[v]==0$
Back edge: $\quad d t[u]>d t[v]$ and $f t[v]=0$
Forward edge: $\quad d t[u]<d t[v]$ and $f t[v] \neq 0$
Cross edge: otherwise

1. if $d t[v]==0$, it is the first time we see v in the DFS search. DFS Tree edge!
2. if $d t[u]>d t[v]$ the DFS search found u after v and since the DFS visit started from v is not complete ($\mathrm{ft}[\mathrm{v}]=0$), v is a descendant of u.
[Path: $v \rightarrow X \rightarrow u]$. Back edge!
3. if $d t[u]<d t[v]$ the DFS search found v after u, therefore v descends from u. Since the visit of v is complete ($\mathrm{ft}[\mathrm{v}]$! $=0$) this is a Forward edge! [Path: $u \rightarrow Y \rightarrow v$]

Topological sorting

Definition

Given a DAG G, a topological sort of G is a linear ordering of its nodes such that if $(u, v) \in E$, then u appears before v in the ordering

Notes:

- There could be several topological sorts
- If there is a cycle, no topological sort is possible

We can think at these DAGs as dependency graphs. If we have edge x-->y activity x has to be completed before y starts.

Note: Edges always from left to right: correct order!

Topological sorting

Problem

Write an algorithm that takes a DAG G as input and returns a topological sort of G as output.

How would you solve this problem?

Topological sorting

Problem

Write an algorithm that takes a DAG G as input and returns a topological sort of G as output.

How would you solve this problem?

Naive solution

- Find a node u with no incoming edges
- Append u to a list; remove u, together with all its edges
- Repeat the procedure until all nodes have been removed

Topological sorting

Naive solution

- Find a node u with no incoming edges
- Append u to a list; remove u, together with all its edges
- Repeat the procedure until all nodes have been removed

Note: we are destroying the graph!!! We could make a copy of the graph first, but this is not a great solution...

Picking 2 or 3 is equivalent (i.e. originates equivalent topological orderings)

Topological sorting

Algorithm

- Execute a DFS in which the "visit" operation consists of adding the node at the head of a list "at finish time" (post-order)
- Return the list of nodes obtained in this way

Output

- The sequence of nodes, sorted by decreasing finish time

Why does it work?

- When a node is "finished", all its descendants have been discovered and added to the list.
- By adding the node in front of the list, nodes are sorted correctly
- We use a stack instead

Topological sorting: example


```
Stack = { }
```


Topological sorting: example

Stack $=\{ \}$

Topological sorting: example

Stack $=\{ \}$

Topological sorting: example

$[3,4]$

$$
\text { Stack }=\{\text { e }\}
$$

Topological sorting: example

$$
\text { Stack }=\{c, e\}
$$

Topological sorting: example

$$
\text { Stack }=\{c, e\}
$$

Topological sorting: example

$$
\text { Stack }=\{c, e\}
$$

Topological sorting: example

$$
\text { Stack }=\{c, e\}
$$

Topological sorting: example

$$
\text { Stack }=\{d, c, e\}
$$

Topological sorting: example

Topological sorting: example

Topological sorting: example

What happens if nodes are chosen in a different order in the DFS visit?

Topological sorting: example

Topological sorting: the code

```
def top_sort(G):
    S = Stack()
    visited = set()
    for u in G.node_iterator():
        if u not in visited:
            top_sortRec(G, u, visited, S)
    return S
def top sortRec(G, u, visited, S):
    visited.add(u)
    for v in G.adj(u):
        if v not in visited:
        top_sortRec(G,v,visited,S)
    S.push(u)
G = Graph()
for u,v,c in [('a','c','black'), ('a','b', 'black'), ('c','e','black'), ('a','e', 'black'),
    G.insert_edge(u,v)
print(top_sor
Stack(a | b | d | c | e)
```


Topological sorting: the code

```
def top_sort(G):
    S = Stack()
    visited = set()
    for u in G.node_iterator():
        if u not in visited:
            top_sortRec(G, u, visited, S)
    return S
def top sortRec(G, u, visited, S):
    visited.add(u)
    for v in G.adj(u):
        if v not in visited:
            top_sortRec(G,v,visited,S)
    S.push(u)
```


$\mathrm{G}=\mathrm{Graph}()$

```
for u,v,c in [('a','b', 'black'), ('a','c','black'), ('a','e', 'black'), ('c','e','black'), ('b','d','black'), ('e','b', 'black')]:
G.insert_edge(u,v)
print(top_sort(G))
Stack(a i c i e j b i d)
```


Strongly connected graphs and components

Definitions

- A directed graph $G=(V, E)$ is strongly connected iff every node is reachable from every other node
- A directed graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a strongly connected component iff G' is a connected and maximal subgraph of G
- G^{\prime} is a subgraph of $G\left(G^{\prime} \subseteq G\right)$ iff $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$
- G^{\prime} is maximal iff there is not other graph $G^{\prime \prime}$ of G such that $G^{\prime \prime}$ is strongly connected and larger than G^{\prime} (i.e. $G^{\prime} \subseteq G^{\prime \prime} \subseteq G$)

Strongly connected graphs and components

Question

- What are the strongly connected components of this graph?

Strongly connected graphs and components

Question

- What are the strongly connected components of this graph?

- Just apply the CC algorithm to directed graphs
- The result depends on the starting node
ids[u] = counter
for v in G.adj(u):
if ids[v] == 0:
ccdfs(G, counter, v, ids)
In a nutshell: perform a DSF visit, assign to each visit the same component number until all nodes visited

DFS visit starting from B, then from A

DFS visit starting from A

DFS visit starting from C, then from B, then from A

Strongly connected components algorithm

Kosaraju Algorithm (1978)

- Perform a DFS of G
- Compute the transpose graph G_{T}
- Run the connected component algorithm on G_{T}, examining the nodes in decreasing finish time w.r.t. the first visit
- Returns the identifiers of the nodes

```
def scc(G):
    #performs a topological sort of G
    S = top sort(G)
    #Transposes G
    GT = transpose(G)
    #modified version of CC algo that
    #gets starting nodes off the stack S
    counter, ids = cc(GT,S)
```


Topological sorting of general graphs

By applying the topological sort algorithm on a general graph, we are sure that:

- if an edge (u, v) does not belong to a cycle, than u appears before v in the sorted sequence
We use thus topsort () to obtain nodes in decreasing finish time.
NOTE: we might have cycles, so this does not necessarily mean that we obtain a topological sort!!!

But the important thing is that all the nodes before the cycle(s) and after the cycles(s) are put in the correct topological sort.

Transpose of a graph

Given a graph $G=(V, E)$, the transpose graph $G_{T}=\left(V, E_{T}\right)$ has the same nodes, while edges are directed in the opposite way:

$$
E_{T}=\{(u, v) \mid(v, u) \in E\}
$$

```
def transpose(G):
    tmpG = Graph()
    for u in G.node iterator():
        for v in G.ädj(u):
        tmpG.insert_edge(v,u)
    return tmpG
```


Transpose of a graph

Given a graph $G=(V, E)$, the transpose graph $G_{T}=\left(V, E_{T}\right)$ has the same nodes, while edges are directed in the opposite way:

$$
E_{T}=\{(u, v) \mid(v, u) \in E\}
$$

```
def transpose(G):
    tmpG = Graph()
    for u in G.node iterator():
        for v in G.ādj(u):
        tmpG.insert_edge(v,u)
    return tmpG
```

Computational cost: $O(m+n)$

- $O(n)$ nodes added
- $O(m)$ edges added
- Each add operation costs $O(1)$

Modified connected components

Instead of examining the nodes in an arbitrary order, this version of $\operatorname{cc}(G, S)$ examines them in the order in which they are stored in the stack S.

```
def cc(G, S):
    ids = dict()
    for node in G.node iterator():
        ids[node] = 0
    counter = 0
    while len(S) > 0:
        u = S.pop()
        if ids[u] == 0:
            counter += 1
            ccdfs(G, counter, u, ids)
    return (counter, ids)
def ccdfs(G, counter, u, ids):
    ids[u] = counter
    for v in G.adj(u):
        if ids[v] == 0:
            ccdfs(G, counter, v, ids)
```


Computational cost: $O(m+n)$

Each phase requires $O(m+n)$

Putting it all together

top_sort(G)

\#performs a topological sort of G S = top_sort(G)
\#Transposes G
$\mathrm{GT}=\operatorname{transpose}(\mathrm{G})$
\#modified version of CC algo that \#gets starting nodes off the stack S counter, ids $=\mathrm{cc}(\mathrm{GT}, \mathrm{S})$

$\mathrm{cc}(\mathrm{GT}, \mathrm{S})$

Output:

Components: 3
Ids:\{'b': 2, 'a': 1, 'd': 3, 'c': 3, 'e': 3, 'f': 3\}

Proof of correctness...

Component Graph $V_{c}=\left(V_{c}, E_{c}\right)$

- $V_{c}=\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$, where C_{i} is the i-th SCC of G
- $E_{c}=\left\{\left(C_{u}, C_{v}\right) \mid \exists(u, v) \in E \wedge u \in C_{u} \wedge v \in C_{v}\right\}$

Questions

- What is the relationship between the SCCs of G and the SCCs of G_{T} ?
- Is the component graph acyclic?

YES. Otherwise any cycle would be a bigger SCC.

NO CYCLES:
top_sort
correctly sorts the components

Proof of correctness...

Discovery time and finish for the component graph

$$
\begin{aligned}
d t(C) & =\min \{d t(u) \mid u \in C\} \\
f t(C) & =\max \{f t(u) \mid u \in C\}
\end{aligned}
$$

These discovery/finish times correspond to the discovery/finish time of the first node to be visited in component C

Proof of correctness...

Theorem

Let C and C^{\prime} be two distinct SCCs in the directed graph $G=(V, E)$. If there is an edge $\left(C, C^{\prime}\right) \in E_{c}$, then $f t(C)>f t\left(C^{\prime}\right)$.

Proof of correctness...

Corollary

Let C_{u} and C_{v} be two distinct SCCs in the directed graph $G=$ (V, E).
If there is an edge $(u, v) \in E_{t}$ with $u \in C_{u}$ and $v \in C_{v}$, then $f t\left(C_{u}\right)<f t\left(C_{v}\right)$.

$$
\begin{aligned}
&(u, v) \in E_{t} \Rightarrow \\
&(v, u) \in E \Rightarrow \\
&\left(C_{v}, c_{u}\right) \in E_{c} \Rightarrow \\
& f t\left(C_{v}\right)>f t\left(C_{u}\right) \Rightarrow \\
& f t\left(C_{u}\right)<f t\left(C_{v}\right)
\end{aligned}
$$

Proof of correctness...

Corollary

Let C_{u} and C_{v} be two distinct SCCs in the directed graph $G=$ (V, E).
If there is an edge $(u, v) \in E_{t}$ with $u \in C_{u}$ and $v \in C_{v}$, then $f t\left(C_{u}\right)<f t\left(C_{v}\right)$.

$$
\begin{aligned}
&(b, a) \in E_{t} \Rightarrow \\
&(a, b) \in E \Rightarrow \\
&\left(C_{a}, C_{b}\right) \in E_{c} \Rightarrow \\
& 12=f t\left(C_{a}\right)>f t\left(C_{b}\right)=11 \Rightarrow \\
& 11=f t\left(C_{b}\right)<f t\left(C_{a}\right)=12
\end{aligned}
$$

[9, 12]

$C D$
$E F$

Proof of correctness...

- If the component C_{u} and the component C_{v} are connected by an edge $(u, v) \in E_{t}$, then:
- From the corollary, $f t\left(C_{u}\right)<f t\left(C_{v}\right)$
- From the algorithm, the visit of C_{v} will start before the visit of C_{u}
- There is no path between C_{v} and C_{u} in G_{t} (otherwise the graph would be cyclic)
- From the algorithm, the visit of C_{v} will not reach C_{u},

In other words, cc() will correctly assign the component identifiers to nodes.

If you are starting to have fun...

Good news... there are at least 110+ other algorithms on graphs!

Pages in category "Graph algorithms"
The following 118 pages are in this category, out of 118 total. This list may not reflect recent changes (learn more).

A A^{*} search algorithn

- Alpha-beta pruning
- Aperiodic graph

B

- B^{*}
- Barabási-Albert model
- Belief propagation

Bellman-Ford algorithm

- Bianconi-Barabási model
- Bidirectional search
- Boråvka's algorithm
- Bottleneck traveling salesman problem

Breadth-first search
Bron-Kerbosch algorithm

- Bully algorithm

C

- Centrality

Chaitin's algorithm
Christofides algorithm

- Clique percolation method
- Closure problem
- Color-coding
- Contraction hierarchies

Courcelle's theorem

- Floyd-Warshall algorithm
- Force-directed graph drawing
- Ford-Fulkerson algorithm
- Fringe search

G

- Gallai-Edmonds decomposition
- Girvan-Newman algorithm
- Goal node (computer science)
- Gomory-Hu tree
- Graph bandwidth
- Graph edit distance
- Graph embedding
- Graph isomorphism
- Graph isomorphism problem
- Graph kernel
- Graph reduction
- Graph traversal

H

- Havel-Hakimi algorithm
- Hierarchical closeness
- Hierarchical clustering of networks
- Hopcroft-Karp algorithm

I

- Iterative deepening A^{*}
- Initial attractiveness
- Minimum bottleneck spanning tree
- Misra \& Gries edge coloring algorithm

N

- Nearest neighbour algorithm
- Network flow problem
- Network simplex algorithm
- Nonblocking minimal spanning switch

P

- PageRank
- Parallel all-pairs shortest path algorithm
- Parallel breadth-first search
- Path-based strong component algorithm
- Pre-topological order
- Prim's algorithm
- Proof-number search
- Push-relabel maximum flow algorithm

R

- Reverse-delete algorithm
- Rocha-Thatte cycle detection algorithm

S

- Semantic Brand Score
- Sethi-Ullman algorithm
- Shortest Path Faster Algorithm
- SMA*

[^0]: see = dfs schema(G,'a', dr, df)
 $s, e=d f s$ schema($\left.G,{ }^{\prime} e^{\prime}, \mathrm{dt}, \mathrm{df}\right)$
 print("Discovery times:\{\}".format(s))
 print("Finish times: \{\}".format(e))

[^1]: s,e = dfs schema(G,'a', dt, df)
 $s, e=d f s _s c h e m a(G, ' e ', d t, d f)$
 print("Discovery times:\{\}".format(s))
 print("Finish times: \{\}".format(e))

[^2]: s,e $=$ dfs schema(G,'a', dt, df)
 $s, e=d f s^{-} s c h e m a(G, ' e ', d t, d f)$
 print("Discovery times:\{\}".format(s))
 print("Finish times: \{\}".format(e))

