
Scientific Programming:
Algorithms (part B)

Programming paradigms - continued -

Luca Bianco - Academic Year 2019-20
luca.bianco@fmach.it
[credits: thanks to Prof. Alberto Montresor]

Greedy algorithms

Independent intervals

Independent intervals

these three intervals are not maximal!

intervals are open on the right, hence these are disjoint

Independent intervals

Path to the solution

Optimal substructure

b0 an+1

ends at -∞ starts at +∞
S[i,j]

Optimal substructure

i jk

S[i,k] S[k,j]

optimal solution A[i,j]

once found k that belongs
to the optimal solution A[i,j],
we need to solve the two
smaller intervals

Optimal substructure

i jk

S[i,k] S[k,j]

optimal solution A[i,j]

once found k that belongs
to the optimal solution A[i,j],
we need to solve the two
smaller intervals

k

We want to prove that if A[i,j] contains the optimal solution of S[i,j] and
k is in A[i,j] then it optimally solves S[i,k] and S[k,j]. By contradiction:

A[i,j]

S[i,k] k S[k,j]

ex. if S[i,k] is better than the corresponding
intervals in A[i,j] → A[i,j] is not optimal

Optimal substructure

i jk

S[i,k] S[k,j]

optimal solution A[i,j]

once found k that belongs
to the optimal solution A[i,j],
we need to solve the two
smaller intervals

k

We want to prove that if A[i,j] contains the optimal solution of S[i,j] and
k is in A[i,j] then it optimally solves S[i,k] and S[k,j]. By contradiction:

A[i,j]

S[i,k] k S[k,j]

ex. if S[i,k] is better than the corresponding
intervals in A[i,j] → A[i,j] is not optimal

Recursive formula

otherwise

because we chose interval K

Dynamic programming

top-down: DP[0,n]

Complexity

Greedy choice

Proof

Greedy choice

Proof

Greedy choice

Consequences of the theoremm’
m

Greedy algorithm

#first greedy choice

#other greedy choices

Complexity?

If input not sorted: O(n log n + n) = O(n log n)
If input sorted: O(n)

Greedy algorithm

#first greedy choice

#other greedy choices

Complexity

If input not sorted: O(n log n + n) = O(n log n)
If input sorted: O(n)

Greedy algorithm

#first greedy choice

#other greedy choices

Complexity

If input not sorted: O(n log n + n) = O(n log n)
If input sorted: O(n)

Greedy algorithm

#first greedy choice

#other greedy choices

Complexity

If input not sorted: O(n log n + n) = O(n log n)
If input sorted: O(n)

Greedy algorithm

#first greedy choice

#other greedy choices

Complexity

If input not sorted: O(n log n + n) = O(n log n)
If input sorted: O(n)

Greedy algorithm

#first greedy choice

#other greedy choices

Complexity

If input not sorted: O(n log n + n) = O(n log n)
If input sorted: O(n)

Greedy algorithm

#first greedy choice

#other greedy choices

Complexity

If input not sorted: O(n log n + n) = O(n log n)
If input sorted: O(n)

Greedy algorithm

#first greedy choice

#other greedy choices

Complexity

If input not sorted: O(n log n + n) = O(n log n)
If input sorted: O(n)

Greedy algorithm

#first greedy choice

#other greedy choices

Complexity

If input not sorted: O(n log n + n) = O(n log n)
If input sorted: O(n)

Genome rearrangements

Transformation of mouse gene order into human gene order on Chr X
(biggest synteny blocks)

[3, 5, 2, 4, 1]

[3, 2, 5, 4, 1]

[3, 2, 1, 4, 5]

[1, 2, 3, 4, 5]

Genome rearrangements

Greedy solution

Greedy solution

In list:
[2, 4, 1, 3, 0]

[0, 3, 1, 4, 2]
[0, 1, 3, 4, 2]
[0, 1, 2, 4, 3]
[0, 1, 2, 3, 4]

In list:
[5, 0, 1, 2, 3, 4]

[0, 5, 1, 2, 3, 4]
[0, 1, 5, 2, 3, 4]
[0, 1, 2, 5, 3, 4]
[0, 1, 2, 3, 5, 4]
[0, 1, 2, 3, 4, 5]

Simple but not optimal!

Approximated algorithms exist...

In list:
[5, 0, 1, 2, 3, 4]

[4, 3, 2, 1, 0, 5]
[0, 1, 2, 3, 4, 5]

Backtracking

Typical problems

we explore all
possible solutions
building/enumerating
them and counting or
stopping when we
find one

Typical problems

Typical problems

Build all solutions

Backtracking

Approach

● Try to build a solution, if it works you are done else undo it
and try again

● “keep trying, you’ll get luckier”

Needs a systematic way to explore the search space looking for
the admissible solution(s)

General scheme

Partial solutions

Decision tree

Note: the decision tree
is “virtual” we do not
need to store it all...

Decision tree

Note: the decision tree
is “virtual” we do not
need to store it all...

Decision tree

Note: the decision tree
is “virtual” we do not
need to store it all...

Decision tree

process or ignore the
solution

Note: the decision tree
is “virtual” we do not
need to store it all...

Decision tree

solution ignored Note: the decision tree
is “virtual” we do not
need to store it all...

Decision tree

Note: the decision tree
is “virtual” we do not
need to store it all...

Decision tree

Note: the decision tree
is “virtual” we do not
need to store it all...

Decision tree

Note: the decision tree
is “virtual” we do not
need to store it all...

Decision tree

Note: the decision tree
is “virtual” we do not
need to store it all...

solution processed

Pruning

Note: the decision tree
is “virtual” we do not
need to store it all...

Even though the tree
might be exponential, with
pruning we might not need
to explore it all

Pruning

Even though the tree
might be exponential, with
pruning we might not need
to explore it all

General schema to find a solution (modify as you like)

S is the list of choices
n is the maximum number of
choices
i is the index of the choice I am
currently making
… other inputs

1. We build a next choice with choices(...) based on the previous choices S[0:i-1]: the
logic of the code goes here

2. For each possible choice, we memorize the choice in S[i]
3. If S[i] is admissible then we process it and we can either stop (if we needed at least

one solution) or continue to the next one (return false)
4. In the latter case we keep going calling enumeration again to compute choice i+1

The recursive call will
test all solutions unless
they return true

Enumeration

Subsets problem

subsets([0, 0, 0, 0, 0],5,0)
Calling: subsets([1, 0, 0, 0, 0],5,1)

subsets([1, 0, 0, 0, 0],5,1)
Calling: subsets([1, 1, 0, 0, 0],5,2)

subsets([1, 1, 0, 0, 0],5,2)
Calling: subsets([1, 1, 1, 0, 0],5,3)

subsets([1, 1, 1, 0, 0],5,3)
Calling: subsets([1, 1, 1, 1, 0],5,4)

subsets([1, 1, 1, 1, 0],5,4)
S:[1, 1, 1, 1, 1] c:1 i:4

1 1 1 1 1
S:[1, 1, 1, 1, 0] c:0 i:4

1 1 1 1 0
Calling: subsets([1, 1, 1, 0, 0],5,4)

subsets([1, 1, 1, 0, 0],5,4)
S:[1, 1, 1, 0, 1] c:1 i:4

1 1 1 0 1
S:[1, 1, 1, 0, 0] c:0 i:4

1 1 1 0 0
Calling: subsets([1, 1, 0, 0, 0],5,3)

subsets([1, 1, 0, 0, 0],5,3)
...

False: we want all solutions

choice: keep or
discard element

an admissible solution has decided if to
keep or discard all elements

Subsets problem

(→ i.e. 2^n sets, printing each costs n)

Subsets problem

(→ i.e. 2^n sets, printing each costs n)

(→ 11111 first and then values decrease...)

Subsets problem:iterative code

n=3, k=1

Subsets problem:iterative code

What is the complexity of this iterative
code?

creation of the
subsets (cost: O(n))

all subsets
(cost: O(2^n))

printing subsets
(cost: O(n))

How many solutions are we testing?

no pruning… can we improve this?

n=3, k=1

Subsets problem: bactracking

Still generates 2^n subsets, for each it will count how
many 1s are present and finally print only the ones having
a correct number of 1s.

What is the complexity of this backtracking
code?

How many solutions are we testing?

no pruning… can we improve this?

n=3, k=1

count how many 1s

we want all solutions

admissible solutions
have k 1s

Subsets problem: bactracking & pruning

What is the complexity of this iterative
code?

generate only solutions that can potentially be admissible!

X

n=3, k=1

Sudoku

Sudoku: pseudocode

Sudoku: pseudocode

Sudoku: python code

8 queens puzzle

8 queens puzzle

