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Greedy algorithms
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Independent intervals

these three intervals are not maximal!

intervals are open on the right, hence these are disjoint



Independent intervals



Path to the solution



Optimal substructure
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We want to prove that if A[i,j] contains the optimal solution of S[i,j] and 
k is in A[i,j] then it optimally solves S[i,k] and S[k,j]. By contradiction:

A[i,j]

S[i,k] k S[k,j]

ex. if S[i,k] is better than the corresponding
intervals in A[i,j] → A[i,j] is not optimal
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Recursive formula

otherwise

because we chose interval K



Dynamic programming

top-down: DP[0,n] 



Complexity



Greedy choice

Proof



Greedy choice

Proof



Greedy choice

Consequences of the theoremm’
m



Greedy algorithm

#first greedy choice

#other greedy choices

Complexity?

If input not sorted: O(n log n + n)  = O(n log n)
If input sorted: O(n)
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Genome rearrangements

Transformation of mouse gene order into human gene order on Chr X 
(biggest synteny blocks)

[3, 5, 2, 4, 1]

[3, 2, 5, 4, 1]

[3, 2, 1, 4, 5]

[1, 2, 3, 4, 5]



Genome rearrangements



Greedy solution



Greedy solution

In list:
[2, 4, 1, 3, 0]

[0, 3, 1, 4, 2]
[0, 1, 3, 4, 2]
[0, 1, 2, 4, 3]
[0, 1, 2, 3, 4]

In list:
[5, 0, 1, 2, 3, 4]

[0, 5, 1, 2, 3, 4]
[0, 1, 5, 2, 3, 4]
[0, 1, 2, 5, 3, 4]
[0, 1, 2, 3, 5, 4]
[0, 1, 2, 3, 4, 5]

Simple but not optimal!

Approximated algorithms exist...

In list:
[5, 0, 1, 2, 3, 4]

[4, 3, 2, 1, 0, 5]
[0, 1, 2, 3, 4, 5]



Backtracking



Typical problems

we explore all
possible solutions 
building/enumerating 
them and counting or 
stopping when we 
find one
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Typical problems



Build all solutions



Backtracking

Approach

● Try to build a solution, if it works you are done else undo it 
and try again

● “keep trying, you’ll get luckier”

Needs a systematic way to explore the search space looking for 
the admissible solution(s)



General scheme



Partial solutions



Decision tree

Note: the decision tree 
is “virtual” we do not 
need to store it all...
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Decision tree

process or ignore the 
solution

Note: the decision tree 
is “virtual” we do not 
need to store it all...



Decision tree

solution ignored Note: the decision tree 
is “virtual” we do not 
need to store it all...
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Decision tree

Note: the decision tree 
is “virtual” we do not 
need to store it all...

solution processed



Pruning

Note: the decision tree 
is “virtual” we do not 
need to store it all...

Even though the tree 
might be exponential, with 
pruning we might not need 
to explore it all
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General schema to find a solution (modify as you like)

S is the list of choices
n is the maximum number of 
choices
i is the index of the choice I am 
currently making
… other inputs

1. We build a next choice with choices(...) based on the previous choices S[0:i-1]: the 
logic of the code goes here

2. For each possible choice, we memorize the choice in S[i] 
3. If S[i] is admissible then we process it and we can either stop (if we needed at least 

one solution) or continue to the next one (return false)
4. In the latter case we keep going calling enumeration again to compute choice i+1

The recursive call will 
test all solutions unless 
they return true



Enumeration



Subsets problem

subsets([0, 0, 0, 0, 0],5,0)
Calling:  subsets([1, 0, 0, 0, 0],5,1)

subsets([1, 0, 0, 0, 0],5,1)
Calling:  subsets([1, 1, 0, 0, 0],5,2)

subsets([1, 1, 0, 0, 0],5,2)
Calling:  subsets([1, 1, 1, 0, 0],5,3)

subsets([1, 1, 1, 0, 0],5,3)
Calling:  subsets([1, 1, 1, 1, 0],5,4)

subsets([1, 1, 1, 1, 0],5,4)
S:[1, 1, 1, 1, 1] c:1 i:4

1 1 1 1 1 
S:[1, 1, 1, 1, 0] c:0 i:4

1 1 1 1 0 
Calling:  subsets([1, 1, 1, 0, 0],5,4)

subsets([1, 1, 1, 0, 0],5,4)
S:[1, 1, 1, 0, 1] c:1 i:4

1 1 1 0 1 
S:[1, 1, 1, 0, 0] c:0 i:4

1 1 1 0 0 
Calling:  subsets([1, 1, 0, 0, 0],5,3)

subsets([1, 1, 0, 0, 0],5,3)
...

False: we want all solutions

choice: keep or 
discard element

an admissible solution has decided if to 
keep or discard all elements



Subsets problem

( →  i.e. 2^n sets, printing each costs n)



Subsets problem

( →  i.e. 2^n sets, printing each costs n)

( → 11111 first and then values decrease...)



Subsets problem:iterative code

n=3, k=1



Subsets problem:iterative code

What is the complexity of this iterative 
code?

creation of the 
subsets (cost: O(n))

all subsets 
(cost: O(2^n))

printing subsets 
(cost: O(n))

How many solutions are we testing?

no pruning… can we improve this?

n=3, k=1



Subsets problem: bactracking

Still generates 2^n subsets, for each it will count how 
many 1s are present and finally print only the ones having 
a correct number of 1s.

What is the complexity of this backtracking 
code?

How many solutions are we testing?

no pruning… can we improve this?

n=3, k=1

count how many 1s

we want all solutions

admissible solutions 
have k 1s



Subsets problem: bactracking & pruning

What is the complexity of this iterative 
code?

generate only solutions that can potentially be admissible!

X

n=3, k=1



Sudoku



Sudoku: pseudocode
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Sudoku: python code



8 queens puzzle



8 queens puzzle


