Scientific Programming: Algorithms (part B)

Programming paradigms - continued -

Luca Bianco - Academic Year 2019-20
luca.bianco@fmach.it
[credits: thanks to Prof. Alberto Montresor]

Greedy algorithms

Greedy

- Greedy approach: select the choice which appears "locally optimal"
- Area of application: optimization problems

Independent intervals

```
Input
Let S={1,2,\ldots,n} be a set of interval of the
real line. Each interval [ a , , bi [, with i\inS, is
closed on the left and open on the right.
    - }\mp@subsup{a}{i}{}\mathrm{ : starting time
    - }\mp@subsup{b}{i}{}\mathrm{ : finish time
```


Problem definition

```
Find a maximal independent subset, i.e. a subset that has maximal cardinality and it is composed by completely disjoint intervals.
```

i	a_{i}	b_{i}
1	1	4
2	3	5
3	0	6
4	5	7
5	3	8
6	5	9
7	6	10
8	8	11
9	8	12
10	2	13
11	12	14

Independent intervals

Input

Let $S=\{1,2, \ldots, n\}$ be a set of interval of the real line. Each interval $\left[a_{i}, b_{i}[\right.$, with $i \in S$, is closed on the left and open on the right.

- a_{i} : starting time
- b_{i} : finish time

Problem definition
Find a maximal independent subset, i.e. a subset that has maximal cardinality and it is composed by completely disjoint intervals.

i	a_{i}	b_{i}
1	1	4
2	3	5
3	0	6
4	5	7
5	3	8
6	5	9
7	6	10
8	8	11
9	8	12
10	2	13
11	12	14

Independent intervals

Input

Let $S=\{1,2, \ldots, n\}$ be a set of interval of the real line. Each interval $\left[a_{i}, b_{i}[\right.$, with $i \in S$, is closed on the left and open on the right.

- a_{i} : starting time
- b_{i} : finish time

Problem definition
Find a maximal independent subset, i.e. a subset that has maximal cardinality and it is composed by completely disjoint intervals.

i	a_{i}	b_{i}
1	1	4
2	3	5
3	0	6
4	5	7
5	3	8
6	5	9
7	6	10
8	8	11
9	8	12
10	2	13
11	12	14

Path to the solution

We start with dynamic programming

- Let's define the problem in a mathematical way
- Let's define the recursive definition

We move to greedy

- Let's search for a greedy choice
- Let's prove that the greedy choice is optimal
- Let's write an iterative algorithm

Optimal substructure

- Assume that the intervals are sorted by finish time:

$$
b_{1} \leq b_{2} \leq \ldots \leq b_{n}
$$

- Let the subproblem $S[i, j]$ be the set of intervals that start after the end of i and finish before the start of j :

$$
S[i, j]=\left\{k \mid b_{i} \leq a_{k}<b_{k} \leq a_{j}\right\}
$$

- Let's add two "dummy" intervals
- Interval 0: $b_{0}=-\infty$
- Interval $n+1: a_{n+1}=+\infty$
- The initial problem corresponds to problem $S[0, n+1]$

Optimal substructure

Theorem

Let $A[i, j]$ be an optimal solution of $S[i, j]$ and let k be an interval belonging to $A[i, j]$; then

- The problem $S[i, j]$ is subdivided in two subproblems
- $S[i, k]$: the intervals of $S[i, j]$ that finish before k
- $S[k, j]$: the intervals of $S[i, j]$ that start after k
- $A[i, j]$ contains the optimal solutions of $S[i, k]$ e $S[k, j]$
- $A[i, j] \cap S[i, k]$ is an optimal solution of $S[i, k]$

- $A[i, j] \cap S[k, j]$ is an optimal solution of $S[k, j]$
once found k that belongs to the optimal solution $A[i, j]$, we need to solve the two smaller intervals

Optimal substructure

Theorem

Let $A[i, j]$ be an optimal solution of $S[i, j]$ and let k be an interval belonging to $A[i, j]$; then

- The problem $S[i, j]$ is subdivided in two subproblems
- $S[i, k]$: the intervals of $S[i, j]$ that finish before k
- $S[k, j]$: the intervals of $S[i, j]$ that start after k
- $A[i, j]$ contains the optimal solutions of $S[i, k]$ e $S[k, j]$
- $A[i, j] \cap S[i, k]$ is an optimal solution of $S[i, k]$

- $A[i, j] \cap S[k, j]$ is an optimal solution of $S[k, j]$
optimal solution $A[i, j]$

Proof

We want to prove that if $A[i, j]$ contains the optimal solution of $S[i, j]$ and
once found k that belongs to the optimal solution $A[i, j]$, we need to solve the two smaller intervals k is in $A[i, j]$ then it optimally solves $S[i, k]$ and $S[k, j]$. By contradiction:

ex. if $\mathrm{S}[\mathrm{i}, \mathrm{k}]$ is better than the corresponding intervals in $A[i, j] \rightarrow A[i, j]$ is not optimal

Optimal substructure

Theorem

Let $A[i, j]$ be an optimal solution of $S[i, j]$ and let k be an interval belonging to $A[i, j]$; then

- The problem $S[i, j]$ is subdivided in two subproblems
- $S[i, k]$: the intervals of $S[i, j]$ that finish before k
- $S[k, j]$: the intervals of $S[i, j]$ that start after k
- $A[i, j]$ contains the optimal solutions of $S[i, k]$ e $S[k, j]$
- $A[i, j] \cap S[i, k]$ is an optimal solution of $S[i, k]$

- $A[i, j] \cap S[k, j]$ is an optimal solution of $S[k, j]$
optimal solution $A[i, j]$

Proof

once found k that belongs to the optimal solution $A[i, j]$, we need to solve the two smaller intervals
We want to prove that if $A[i, j]$ contains the optimal solution of $S[i, j]$ and k is in $A[i, j]$ then it optimally solves $S[i, k]$ and $S[k, j]$. By contradiction:

ex. if $\mathrm{S}[\mathrm{i}, \mathrm{k}]$ is better than the corresponding intervals in $A[i, j] \rightarrow A[i, j]$ is not optimal

Recursive formula

Recursive definition of the solution

$$
A[i, j]=A[i, k] \cup\{k\} \cup A[k, j]
$$

Recursive definition of the cost

- How to identify k ? By trying all the possibilities
- Let $D[i, j]$ the size of the largest subset $A[i, j] \subseteq S[i, j]$ of independent intervals

$$
D[i, j]= \begin{cases}0 & S[i, j]=\emptyset \\ \max _{k \in S[i, j]}\{D[i, k]+D[k, j]+1\} & \text { otherwise }\end{cases}
$$

Dynamic programming

$$
D[i, j]=\left\{\begin{array}{l}
0 \\
\max _{k \in S[i, j]}\{D[i, k]+D[k, j]+1\}
\end{array}\right.
$$

$$
S[i, j]=\emptyset
$$

otherwise

import math

\#gets intervals within startI (the interval) and endI

 def S(intervals, startI, endI):return [x for x in intervals
if $x[0]>=s t a r t I[1]$ and $x[1]<$ endI[0]]
def disjointInt(intervals, i, j, DP):
s = S(intervals, intervals[i], intervals[j])
if $\operatorname{len}(s)==0$:
return 0
else:
if (i,j) not in DP:
$\mathrm{m}=0$
start $=$ intervals.index(s[0])
end $=$ intervals.index(s[-1])
for k in range(start,end+1):
if (i,k) not in DP:
$D P[(i, k)]=$ disjointInt(intervals, $i, k, D P)$
if (k, j) not in DP:
$D P[(k, j)]=$ disjointInt(intervals, $k, j, D P)$
$m=\max (m, D P[(i, k)]+D P[(k, j)]+1)$
$D P[(i, j)]=m$
return $D P[(i, j)]$
def disjoint intervals(intervals):
D $=\operatorname{dict}()$
return disjointInt(intervals, 0, len(intervals)-1, D)
top-down: DP[0,n]
intervals $=[(-$ math.inf, 0$),(1,4),(3,5),(0,6),(5,8),(3,8),(5,9),(6,10),(8,11)$, $(8,12),(2,13),(12,14),(15$, math.inf $)]$
print(S(intervals, $(1,4),(12,14)))$
print (S(intervals, $(3,5),(12,14)))$
print(S(intervals, intervals[0], intervals[-1]))
print(disjoint_intervals(intervals))
$[(5,8),(5,9),(6,10),(8,11)]$
$[(1,4),(3,5),(0,6),(5,8),(3,8),(5,9),(6,10),(8,11),(8,12),(2,13),(12,14)]$
4

Complexity

Dynamic programming

- The definition allows us to write an algorithm based on dynamic programming or memoization
- Complexity $O\left(n^{3}\right)$: we need to solve all potential problems with $i<j$, and it costs $O(n)$ for each subproblem in the worst case.

Can we do better?

- Are we sure that we need to analyze all the values of k ?
\#gets intervals within startI (the interval) and endI def S(intervals, startI, endI):
return [x for x in intervals
if $x[0]>=s t a r t I[1]$ and $x[1]<e n d I[0]]$
def disjointInt(intervals, i, j, DP):
$\mathrm{s}=\mathrm{S}($ intervals, intervals[i], intervals[j])
if $\operatorname{len}(s)=0$:
return 0
else:
if (i,j) not in DP:
$\mathrm{m}=0$
start $=$ intervals.index(s[0])
end $=$ intervals.index(s[-1])for k in range(start, end +1):
if (i,k) not in DP.
DP[(i,k)] = disjointInt(intervals, i, k, DP) if (k, j) not in DP:

DP $[(k, j)]=$ disjointInt(intervals, $k, j, D P)$
$m=\max (m, D P[(i, k)]+\operatorname{DP}[(k, j)]+1)$
$D P[(i, j)]=m$
return DP[(i,j)]

```
def disjoint intervals(intervals):
    D = dict()
    return disjointInt(intervals, 0, len(intervals)-1, D)
```


Greedy choice

Theorem

Let $S[i, j]$ a non-empty subproblem, and let m be the interval of $S[i, j]$ that has the smallest finish time, then:
(1) the subproblem $S[i, m]$ is empty
(2) m is included in some optimal solution of $S[i, j]$

Proof (1)

We know that: $\quad a_{m}<b_{m}$
(Interval definition)
We know that: $\quad \forall k \in S[i, j]: b_{m} \leq b_{k} \quad$ (m has smallest finish time)
Then: $\quad \forall k \in S[i, j]: a_{m}<b_{k} \quad$ (Transitivity)
If no interval in $S[i, j]$ terminates before a_{m}, then $S[i, m]=\emptyset$

Greedy choice

Theorem

Let $S[i, j]$ a non-empty subproblem, and let m be the interval of $S[i, j]$ that has the smallest finish time, then:
(1) the subproblem $S[i, m]$ is empty
(0) m is included in some optimal solution of $S[i, j]$

Proof

- Let $A^{\prime}[i, j]$ an optimal solution of $S[i, j]$
- Let $m^{\prime} \in A^{\prime}[i, j]$ be the interval with smallest finish time $A^{\prime}[i, j]$
- Let $A[i, j]=A^{\prime}[i, j]-\left\{m^{\prime}\right\} \cup\{m\}$ be a new solution obtained by removing m^{\prime} from and adding m to $A^{\prime}[i, j]$
- $A[i, j]$ is an optimal solution that contains m, because it has same size of $A^{\prime}[i, j]$

Greedy choice

- Let $A^{\prime}[i, j]$ an optimal solution of $S[i, j]$
- Let $m^{\prime} \in A^{\prime}[i, j]$ be the interval with smallest finish time $A^{\prime}[i, j]$
- Let $A[i, j]=A^{\prime}[i, j]-\left\{m^{\prime}\right\} \cup\{m\}$ be a new solution obtained by removing m^{\prime} from and adding m to $A^{\prime}[i, j]$
- $A[i, j]$ is an optimal solution that contains m, because it has same size of $A^{\prime}[i, j]$

Consequences of the theorem

- It's not necessary to analyze all values of k
- Let's do a "greedy" choice: let's select the activity m with the smallest finish time
- It is not necessary to analyze two subproblems
- Remove all the activities that are not compatible with the greedy choice
- We only get a subproblem: $S[m, j]$

Greedy algorithm

```
def disjoint_greedy(intervals):
    #sort pairs by finishing time
    #if not sorted
    intervals.sort(key = lambda x : x[1])
    S = [0] #first greedy choice
    last = 0
    for i in range(1,len(intervals)):
        if intervals[i][0] >= intervals[last][1]:
            S.append(i) #other greedy choices
            last = i
    return S
intervals = [ (1,4),(3,5), (0,6), (5,8), (3,8), (5,9), (6,10),(8,11),
        (8,12), (2,13), (12,14)]
DI = disjoint_greedy(intervals)
print(DI)
for i in DI:
    print(intervals[i], end = " ")
```


Complexity?

If input not sorted: $\mathbf{O}(\mathbf{n} \log \mathbf{n}+\mathbf{n})=\mathbf{O}(\mathbf{n} \log \mathbf{n})$ If input sorted: $\mathbf{O}(\mathbf{n})$

Greedy algorithm

```
def disjoint_greedy(intervals):
    #sort pairs by finishing time
    #if not sorted
    intervals.sort(key = lambda x : x[1])
    S = [0]
    last = 0
    for i in range(1,len(intervals)):
        if intervals[i][0] >= intervals[last][1]:
            S.append(i) #other greedy choices
            last = i
    return S
```

intervals $=[(1,4),(3,5),(0,6),(5,8),(3,8),(5,9),(6,10),(8,11)$,
$(8,12),(2,13),(12,14)]$
DI = disjoint_greedy (intervals)
print(DI)
for i in DI:
print(intervals[i], end = " ")
$[0,3,7,10]$
$(1,4)(5,8)(8,11)(12,14)$

Complexity

If input not sorted: $\mathbf{O}(\mathbf{n} \log \mathbf{n}+\mathbf{n})=\mathbf{O}(\mathbf{n} \log n)$ If input sorted: $\mathbf{O}(\mathbf{n})$

Greedy algorithm

```
def disjoint_greedy(intervals):
    #sort pairs by finishing time
    #if not sorted
    intervals.sort(key = lambda x : x[1])
    S = [0] #first greedy choice
    last = 0
    for i in range(1,len(intervals)):
        if intervals[i][0] >= intervals[last][1]:
            S.append(i) #other greedy choices
            last = i
    return S
```

intervals $=[(1,4),(3,5),(0,6),(5,8),(3,8),(5,9),(6,10),(8,11)$,
$(8,12),(2,13),(12,14)]$
DI = disjoint_greedy (intervals)
print(DI)
for i in DI:
print(intervals[i], end = " ")
$[0,3,7,10]$
$(1,4)(5,8)(8,11)(12,14)$

Complexity

If input not sorted: $\mathbf{O}(\mathbf{n} \log \mathrm{n}+\mathrm{n})=\mathbf{O}(\mathrm{n} \log \mathrm{n})$ If input sorted: $\mathbf{O}(\mathbf{n})$

Greedy algorithm

```
def disjoint_greedy(intervals):
    #sort pairs by finishing time
    #if not sorted
    intervals.sort(key = lambda x : x[1])
    S = [0] #first greedy choice
    last = 0
    for i in range(1,len(intervals)):
        if intervals[i][0] >= intervals[last][1]:
            S.append(i) #other greedy choices
            last = i
    return S
```


intervals $=[(1,4),(3,5),(0,6),(5,8),(3,8),(5,9),(6,10),(8,11)$,
$(8,12),(2,13),(12,14)]$
DI = disjoint_greedy (intervals)
print(DI)
for i in DI
print(intervals[i], end = " ")
$[0,3,7,10]$
$(1,4)(5,8)(8,11)(12,14)$

Greedy algorithm

```
def disjoint_greedy(intervals):
    #sort pairs by finishing time
    #if not sorted
    intervals.sort(key = lambda x : x[1])
    S = [0] #first greedy choice
    last = 0
    for i in range(1,len(intervals)):
        if intervals[i][0] >= intervals[last][1]:
            S.append(i) #other greedy choices
            last = i
    return S
```

intervals $=[(1,4),(3,5),(0,6),(5,8),(3,8),(5,9),(6,10),(8,11)$,
$(8,12),(2,13),(12,14)]$
DI = disjoint_greedy (intervals)
print(DI)
for i in DI:
print(intervals[i], end = " ")
$[0,3,7,10]$
$(1,4)(5,8)(8,11)(12,14)$

Complexity

If input not sorted: $\mathbf{O}(\mathbf{n} \log \mathbf{n}+\mathbf{n})=\mathbf{O}(\mathbf{n} \log \mathbf{n})$ If input sorted: $\mathbf{O}(\mathbf{n})$

Greedy algorithm

```
def disjoint_greedy(intervals):
    #sort pairs by finishing time
    #if not sorted
    intervals.sort(key = lambda x : x[1])
    S = [0] #first greedy choice
    last = 0
    for i in range(1,len(intervals)):
        if intervals[i][0] >= intervals[last][1]:
            S.append(i) #other greedy choices
            last = i
    return S
```

intervals $=[(1,4),(3,5),(0,6),(5,8),(3,8),(5,9),(6,10),(8,11)$,
$(8,12),(2,13),(12,14)]$
DI = disjoint_greedy (intervals)
print(DI)
for i in DI:
print(intervals[i], end = " ")
$[0,3,7,10]$
$(1,4)(5,8)(8,11)(12,14)$

Complexity

If input not sorted: $\mathbf{O}(\mathbf{n} \log \mathbf{n}+\mathbf{n})=\mathbf{O}(\mathbf{n} \log \mathbf{n})$ If input sorted: $\mathbf{O}(\mathbf{n})$

Greedy algorithm

```
def disjoint_greedy(intervals):
    #sort paīrs by finishing time
    #if not sorted
    intervals.sort(key = lambda x : x[1])
    S = [0] #first greedy choice
    last = 0
    for i in range(1,len(intervals)):
        if intervals[i][0] >= intervals[last][1]:
            S.append(i) #other greedy choices
            last = i
    return S
```

intervals $=[(1,4),(3,5),(0,6),(5,8),(3,8),(5,9),(6,10),(8,11)$,
$(8,12),(2,13),(12,14)]$
DI = disjoint_greedy (intervals)
print(DI)
for i in DI:
print(intervals[i], end = " ")
$[0,3,7,10]$
$(1,4)(5,8)(8,11)(12,14)$

Complexity

If input not sorted: $\mathbf{O}(\mathbf{n} \log \mathbf{n}+\mathbf{n})=\mathbf{O}(\mathbf{n} \log \mathbf{n})$ If input sorted: $\mathbf{O}(\mathbf{n})$

Greedy algorithm

```
def disjoint_greedy(intervals):
    #sort paīrs by finishing time
    #if not sorted
    intervals.sort(key = lambda x : x[1])
    S = [0] #first greedy choice
    last = 0
    for i in range(1,len(intervals)):
        if intervals[i][0] >= intervals[last][1]:
            S.append(i) #other greedy choices
            last = i
    return S
```

intervals $=[(1,4),(3,5),(0,6),(5,8),(3,8),(5,9),(6,10),(8,11)$,
$(8,12),(2,13),(12,14)]$
DI = disjoint_greedy (intervals)
print(DI)
for i in DI:
print(intervals[i], end = " ")
$[0,3,7,10]$
$(1,4)(5,8)(8,11)(12,14)$

Complexity

If input not sorted: $\mathbf{O}(\mathbf{n} \log \mathbf{n}+\mathbf{n})=\mathbf{O}(\mathbf{n} \log \mathbf{n})$ If input sorted: $\mathbf{O}(\mathbf{n})$

Greedy algorithm

```
def disjoint_greedy(intervals):
    #sort paīrs by finishing time
    #if not sorted
    intervals.sort(key = lambda x : x[1])
    S = [0] #first greedy choice
last = 0
    for i in range(1,len(intervals)):
        if intervals[i][0] >= intervals[last][1]:
            S.append(i) #other greedy choices
            last = i
    return S
```

ult=1

intervals $=[(1,4),(3,5),(0,6),(5,8),(3,8),(5,9),(6,10),(8,11)$,
$(8,12),(2,13),(12,14)]$
DI = disjoint_greedy (intervals)
print(DI)
for i in DI
print(intervals[i], end = " ")
$[0,3,7,10]$
$(1,4)(5,8)(8,11)(12,14)$

Genome rearrangements

Transformation of mouse gene order into human gene order on Chr X (biggest synteny blocks)

Genome rearrangements

- Syntheny blocks (for a computer scientist: substrings)
- Re-arrangement: reversing the order of a group of syntheny block
- $\pi=\pi_{1} \pi_{2} \ldots \pi_{i-1} \overline{\pi_{i} \pi_{i+1} \ldots \pi_{j-1} \pi_{j}} \pi_{j+1} \ldots \pi_{n-1} \pi_{n}$
- $\pi \cdot \rho(i, j)=\pi_{1} \pi_{2} \ldots \pi_{i-1} \overleftarrow{\pi_{j} \pi_{j-1} \ldots \pi_{i+1} \pi_{i}} \pi_{j+1} \ldots \pi_{n-1} \pi_{n}$
- Example: $\pi=12 \overrightarrow{4375} 6, \pi \cdot \rho(3,6)=12 \overleftarrow{5734} 6$

Reversal Distance Problem

Given two permutations, find a shortest series of reversals that transforms one permutation into another

Greedy solution

Reversal Distance Problem

Given two permutations, find a shortest series of reversals that transforms one permutation into another

- We define prefix (π) to be the number of already-sorted elements of π
- A sensible strategy for sorting by reversals is to increase prefix (π) at every step.
- This leads to an algorithm that sorts a permutation by repeatedly moving its i th element to the i th position.

Greedy solution

Reversal Distance Problem
Given two permutations, find a shortest series of reversals that transforms one permutation into another

```
def simple_reversal_sorting(L):
    n= len(L)
    for i in range(0,n-1):
        j = L.index(i)
        if j != i:
            L[i:j+1] = L[i:j+1][::-1] # rho(i,j)
            print(L)
```

```
L = [5,0,1,2,3,4]
print("In list:\n{}\n".format(L))
simple_reversal_sorting(L)
L1 = [2, 4, 1, 3, 0]
print("\nIn list:\n{}\n".format(L1))
simple_reversal_sorting(L1)
In list:
[2, 4, 1, 3, 0]
[0, 3, 1, 4, 2]
[0, 1, 3, 4, 2]
[0, 1, 2, 4, 3]
[0,1,2,3,4]
```

In list:
[5, 0, 1, 2, 3, 4]
In list:
[5, 0, 1, 2, 3, 4]

Simple but not optimal!

Approximated algorithms exist...

Backtracking

Problem classes (decisional, search, optimization)

- Definition bases on the concept of admissible solution: a solution that satisfies a given set of criteria

Typical problems

- Build one or all admissible solution
- Counting the admissible solutions
- Find the admissible solution "largest", "smallest", in general "optimal"

Typical problems

Enumeration

- List algorithmically all possible solutions (search space)
we explore all possible solutions
- Example: list all the permutations of a set building/enumerating them and counting or stopping when we find one

Build at least a solution

- We use the algorithm for enumeration, stopping at the first solution found
- Example: identify a sequence of steps in the Fifteen game

Typical problems

Count the solutions

- In some cases, it is possible to count in analytical way
- Example: counting the number of subsets of k elements taken by a set of n elements

$$
\frac{n!}{k!(n-k)!}
$$

- In other cases, we build the solutions and we count them
- Example: number of subsets of a integer set S whose sum is equal to a prime number

Typical problems

Find optimal solutions

- We enumerate all possible solutions and evaluate them through a cost function
- Only if other techniques are not possible:
- Dynamic programming
- Greedy
- Example: Hamiltonian circuit (Traveling salesman)

Build all solutions

To build all the solutions, we use a "brute-force" approach

- Sometimes, it is the only possible way
- The power of modern computer makes possible to deal with problems medium-small problems
- $10!=3.63 \cdot 10^{6}$ (permutation of 10 elements)
- $2^{20}=1.05 \cdot 10^{6}$ (subsets of 20 elements)
- Sometimes, the space of all possible solutions does not need to be analyzed entirely

Backtracking

Approach

- Try to build a solution, if it works you are done else undo it and try again
- "keep trying, you'll get luckier"

Needs a systematic way to explore the search space looking for the admissible solution(s)

General scheme

General organization

- A solution is represented by a list S
- The content of element $S[i]$ is taken from a set of choices C that depends on the problem

Examples

- C generic set, possible solutions permutations of C
- C generic set, possible solutions subsets of C
- C game moves, possible solutions a sequence of moves
- C edges of a graph, possible solutions paths

Partial solutions

- At each step, we start from a partial solution S where $k \geq 0$ choices have been already taken
- If $S[0: k]$ is an admissible solution, we "process" it
- E.g., we can print it
- We can then decide to stop here or keep going by listing/printing all solutions

- If $S[0: k]$ is not a complete solution:
- If possible, we extended solution $S[0: k]$ with one of the possible choices to get a solution $S[0: k+1]$
- Otherwise, we "cancel" the element $S[k]$ (backtrack) and we go back to to solution $S[0: k-1]$

Decision tree

- Decision tree \equiv Search space
- Root \equiv Empty solution
- Internal nodes \equiv Partial solutions
- Leaves \equiv Admissible solutions

Note: the decision tree
is "virtual" we do not need to store it all...

Decision tree

- Decision tree \equiv Search space
- Root \equiv Empty solution
- Internal nodes \equiv Partial solutions
- Leaves \equiv Admissible solutions

Note: the decision tree is "virtual" we do not need to store it all...

Decision tree

- Decision tree \equiv Search space
- Root \equiv Empty solution
- Internal nodes \equiv Partial solutions
- Leaves \equiv Admissible solutions

Note: the decision tree is "virtual" we do not need to store it all...

Decision tree

- Decision tree \equiv Search space
- Root \equiv Empty solution
- Internal nodes \equiv Partial solutions
- Leaves \equiv Admissible solutions

process or ignore the
solution
Note: the decision tree
is "virtual" we do not need to store it all...

Decision tree

- Decision tree \equiv Search space
- Root \equiv Empty solution
- Internal nodes \equiv Partial solutions
- Leaves \equiv Admissible solutions

solution ignored
Note: the decision tree
is "virtual" we do not need to store it all...

Decision tree

- Decision tree \equiv Search space
- Root \equiv Empty solution
- Internal nodes \equiv Partial solutions
- Leaves \equiv Admissible solutions

Note: the decision tree is "virtual" we do not need to store it all...

Decision tree

- Decision tree \equiv Search space
- Root \equiv Empty solution
- Internal nodes \equiv Partial solutions
- Leaves \equiv Admissible solutions

Note: the decision tree is "virtual" we do not need to store it all...

Decision tree

- Decision tree \equiv Search space
- Root \equiv Empty solution
- Internal nodes \equiv Partial solutions
- Leaves \equiv Admissible solutions

Note: the decision tree is "virtual" we do not need to store it all...

Decision tree

- Decision tree \equiv Search space
- Root \equiv Empty solution
- Internal nodes \equiv Partial solutions
- Leaves \equiv Admissible solutions

solution processed
Note: the decision tree is "virtual" we do not need to store it all...

Pruning

- "Branches" of the trees that do not bring to admissible solutions can be "pruned"
- The evaluation is done in the partial solutions corresponding to internal nodes

Note: the decision tree is "virtual" we do not need to store it all...

Pruning

- "Branches" of the trees that do not bring to admissible solutions can be "pruned"
- The evaluation is done in the partial solutions corresponding to internal nodes

Even though the tree might be exponential, with pruning we might not need to explore it all

General schema to find a solution (modify as you like)

```
boolean enumeration(OBJECT[] \(S\), int \(n\), int \(i, \ldots\) )
Set \(C\). \(\mathbf{S}\) is the list of choices
SET \(C=\operatorname{choices}(S, n, i, \ldots) \quad \%\) Compute \(C\) based on \(S[0: i-1] \quad \mathbf{n}\) is the maximum number of
foreach \(c \in C\) do
    \(S[i]=c\)
    if isAdmissible \((S, n, i)\) then
        if processSolution \((S, n, i, \ldots)\) then
            \(L\) return True
    if enumeration \((S, n, i+1, \ldots)\) then
        return True
return False
```

choices
\mathbf{i} is the index of the choice I am currently making
... other inputs

The recursive call will test all solutions unless they return true

1. We build a next choice with choices(...) based on the previous choices $\mathrm{S}[0: i-1]$: the logic of the code goes here
2. For each possible choice, we memorize the choice in $\mathrm{S}[i]$
3. If $\mathrm{S}[i]$ is admissible then we process it and we can either stop (if we needed at least one solution) or continue to the next one (return false)
4. In the latter case we keep going calling enumeration again to compute choice i+1

Enumeration

$$
\begin{aligned}
& \text { boolean enumeration(OBJECT[] } S, \text { int } n, \text { int } i, \ldots) \\
& \hline \text { SET } C=\text { choices }(S, n, i, \ldots) \quad \% \text { Compute } C \text { based on } S[0: i-1] \\
& \text { foreach } c \in C \text { do } \\
& \qquad \begin{array}{l}
S[i]=c \\
\text { if isAdmissible }(S, n, i) \text { then } \\
\quad \text { if processSolution }(S, n, i, \ldots) \text { then } \\
\llcorner\text { return True } \\
\text { if enumeration }(S, n, i+1, \ldots) \text { then } \\
\text { } \quad \text { return True }
\end{array}
\end{aligned}
$$

- S : list containing the partial solutions
return False
- i : current index
- ...: additional information
- C : the set of possible candidates to extend the current solution
- isAdmissible(): returns True if $S[0: i]$ is an admissible solution
- processSolution(): returns
- True to stop the execution at the first admissible solution
- False to explore the entire tree

Subsets problem

List all subsets of $\{0, \ldots, n-1\}$

def process solution(S):

```
    for i in range(len(S)):
        print(S[i], end = " ")
    print("")
    return False
```

\qquad

``` False: we want all solutions
```

$\mathrm{n}=5$
$S=[0] * n$
subsets ($\mathrm{S}, \mathrm{n}, 0$)
def process solution(S):

```
def subsets(S,n,i):
#print("subsets({},{},{})".format(S,n,i))
choice: keep or
    C = [1, 0] if i<n else []
    for c in C:
        S[i] = c
        if i == n-1: \longleftarrow %print("\t\tS:{} c:{} i:{}"., format (S, c,i))
        if i == n-1: \longleftarrow #print("\t\tS:{} c:{} i:{}".format (S, c,i))
            if process_solution(S):
                return True
        else:
            #print("\tCalling: subsets({},{},{})".format(S,n,i+1))
            subsets(S, n,i+1)
    return False discard element
-
```

```
boolean enumeration(OBJECT[] S, int n, int i,\ldots)
SET C = choices(S,n,i,\ldots) % Compute C based on S[0:i-1]
foreach c\inC do
    S[i]=c
    if isAdmissible(S,n,i) then
        if processSolution(S,n,i,\ldots) then
        return True
    if enumeration(S,n,i+1,\ldots) then
        return True
return False
```

11111
$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0\end{array}$
$\begin{array}{lllll}1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1\end{array}$ $\begin{array}{lllll}1 & 1 & 1 & 0 & 1\end{array}$ $\begin{array}{lllll}1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1\end{array}$ $\begin{array}{lllll}1 & 1 & 0 & 1 & 1\end{array}$ $\begin{array}{lllll}1 & 1 & 0 & 1 & 0\end{array}$ $\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1\end{array}$ $\begin{array}{lllll}1 & 1 & 0 & 0 & 0\end{array}$ $\begin{array}{lllll}1 & 0 & 1 & 1 & 1\end{array}$ $\begin{array}{lllll}1 & 0 & 1 & 1 & 0\end{array}$ 10101 10100 10011
$\begin{array}{lllll}1 & 0 & 0 & 1 & 0\end{array}$
$\begin{array}{lllll}1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1\end{array}$
$\begin{array}{lllll}1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0\end{array}$
10000 $\begin{array}{lllll}0 & 1 & 1 & 1 & 1\end{array}$ 01110 011101 $\begin{array}{lllll}0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1\end{array}$
$\begin{array}{lllll}0 & 1 & 0 & 1 & 1\end{array}$
$\begin{array}{lllll}0 & 1 & 0 & 1 & 0\end{array}$
$\begin{array}{lllll}0 & 1 & 0 & 0 & 1\end{array}$ 01000 00111
00110
00101
00100
$\begin{array}{lllll}0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1\end{array}$
$\begin{array}{lllll}0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0\end{array}$
$\begin{array}{lllll}0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}$
0001
0000

subsets([0, 0, 0, 0, 0],5,0)

Calling: subsets([1, 0, 0, 0, 0],5,1)
subsets([1, 0, 0, 0, 0],5,1)
Calling: subsets([1, 1, 0, 0, 0],5,2)
subsets([1, 1, 0, 0, 0],5,2)
Calling: subsets([1, 1, 1, 0, 0],5,3)
subsets([1, 1, 1, 0, 0],5,3)
Calling: subsets([1, 1, 1, 1, 0],5,4)
subsets([1, 1, 1, 1, 0],5,4)
$\mathrm{S}:[1,1,1,1,1] \mathrm{c}: 1 \mathrm{i}: 4$
11111
$\mathrm{S}:[1,1,1,1,0] \mathrm{c}: 0 \mathrm{i}: 4$
11110
Calling: subsets([1, 1, 1, 0, 0],5,4)
subsets([1, 1, 1, 0, 0],5,4)
$\mathrm{S}:[1,1,1,0,1] \mathrm{c}: 1 \mathrm{i}: 4$
11101
$S:[1,1,1,0,0]$ c:0 i:4
11100
Calling: subsets([1, 1, 0, 0, 0],5,3)
subsets([1, 1, 0, 0, 0],5,3)

Subsets problem

for i in range(len(S))
print(S[i], end = " ")
print("")
subsets ($\mathrm{S}, \mathrm{n}, \mathrm{i}$)
\#print("subsets($\},\{ \},\{ \}$)". format (s, n, i))
C = [1, 0] if i<n else []
for c in C :
$\mathrm{S}[\mathrm{i}]=\mathrm{c}$
\#print(" $\backslash t \backslash t s:\{ \} \quad c:\{ \} \quad i:\{ \}$ ".format($S, c, i)$)
if process_solution(S):
else:
\#print("\tCalling: $\operatorname{subsets}(\},\{ \},\{ \})$ ". format $(S, n, i+1))$
return False

- There is no pruning. All the possible space is explored. But this is required by the definition of the problem
$\mathrm{n}=5$
$\mathrm{~S}=[0] * \mathrm{n}$
subsets ($\mathrm{S}, \mathrm{n}, 0$)
- Computational complexity $O\left(n 2^{n}\right) \quad\left(\rightarrow\right.$ i.e. $2^{\wedge} \mathrm{n}$ sets, printing each costs n)
- In which order sets are printed?
- Is it possible to think to an iterative version, ad-hoc for this problem?
(non-backtracking)

Subsets problem

pror in in range(len(S))
print(S[i], end = " ")
print("")
return False
\#print("subsets(\{\}, \{\}, \{\})". format($(s, n, i))$
$\mathrm{c}=[1,0]$ if $\mathrm{i}<\mathrm{n}$ else []
for c in C:
$\mathrm{S}[\mathrm{i}]=\mathrm{c}$
\#print("\t\tS:\{\} c:\{\} $i:\{ \}$ ".format($S, c, i)$)
if process_solution(S):
else:
\#print(") ${ }^{\text {tCalling }}$
subsets $\left(\},\{ \},\{ \})^{\prime \prime}\right.$. format $\left.(S, n, i+1)\right)$
return False

- There is no pruning. All the possible space is explored. But this is required by the definition of the problem
$\mathrm{n}=5$
$\mathrm{~S}=[0] *$
subsets (S, $n, 0$)
- Computational complexity $O\left(n 2^{n}\right) \quad\left(\rightarrow\right.$ i.e. $2^{\wedge} \mathrm{n}$ sets, printing each costs n)
- In which order sets are printed? ($\rightarrow 11111$ first and then values decrease...)
- Is it possible to think to an iterative version, ad-hoc for this problem?
(non-backtracking)


```
def subsets(n):
    for i in range(0,2**n):
    #i is a bit mask!
    print("{0:05b}".format(i))
```


Subsets problem:iterative code

List all possible subsets of size k of a set $\{0, \ldots, n-1\}$

Subsets problem:iterative code

List all possible subsets of size k of a set $\{0, \ldots, n-1\}$

What is the complexity of this iterative
def subsets($n, k)$:
for i in range $(0,2 * * n)$:
\#i is a bit mask!
$b=$ "\{0:05b\}". format(i)
sets $=[x$ for x in range(len(b)) if int $(b[x])==1]$
if $\operatorname{len}($ sets $)==k$:
print("\{\} --> subset: \{\}".format(b,sets))
subsets $(5,3)$

00111 --> subset: $[2,3,4]$
01011 --> subset: $[1,3,4]$
$01101 \rightarrow$ subset: $[1,2,4]$
01110 --> subset: [1, 2, 3]
10011 --> subset: $[0,3,4]$ 10101 --> subset: [0, 2, 4] $10110 \rightarrow>$ subset: $[0,2,3]$ 11001 --> subset: $[0,1,4]$ $11010 \rightarrow>$ subset: $[0,1,3]$ $11100->$ subset: $[0,1,2]$
all subsets
(cost: $O\left(2^{\wedge} n\right)$)
code?

$$
O\left(n \cdot 2^{n}\right)
$$

How many solutions are we testing?
2^{n}
no pruning... can we improve this?

Subsets problem: bactracking

List all possible subsets of size k of a set $\{0, \ldots, n-1\}$


```
def process solution(S):
    sets = []
    for i in range(len(S)):
        print(S[i], end = "")
        if S[i] == 1:
            sets.append(i)
    print(" -> {}".format(sets)) we want all solutions
    return False
def subsets(S, k, n, i, count ):
    C = [1,0]
    for c in C:
        S[i] = C
        count = count + c
        if i == n-1:
            if count == k:
                #print(S)
                process solution(S)
        else:
            subsets(S, k, n, i+1, count)
        #backtracking
        #print(count)
        count = count -c
n=5
k = 3
S = [0]*n
subsets(S, k, n, 0, 0)
count how many 1s
admissible solutions
have k 1s
\(\left.\begin{array}{l}11100 \rightarrow[0,1,2] \\ 11010 \rightarrow[0,1,3] \\ 11001 \rightarrow[0,1,4] \\ 10110 \rightarrow[0,2,3] \\ 10101 \rightarrow[0,2,4] \\ 10011 \rightarrow[0,3,4] \\ 01110 \rightarrow[1,2,3] \\ 01101 \rightarrow[1,2,4] \\ 01011 \\ 00111\end{array}\right]\left[\begin{array}{ll}1, & 3,4]\end{array}\right.\)
```

Still generates $2^{\wedge} n$ subsets, for each it will count how many 1 s are present and finally print only the ones having a correct number of 1 s .

What is the complexity of this backtracking code?

$$
O\left(n \cdot 2^{n}\right)
$$

How many solutions are we testing?

Subsets problem: bactracking \& pruning

List all possible subsets of size k of a set $\{0, \ldots, n-1\}$

\#Pruning!
def subsets(S, k, n, i, count):
if count $<k$ and count $+(n-i)>=k$:
\qquad generate only solutions that can potentially be admissible!
$\mathrm{C}=[1,0]$
else:
C $=$ []
for c in C :
$\mathrm{S}[\mathrm{i}]=\mathrm{c}$
count $=$ count +c
if count $==$ k:
\#print(S)
process_solution(s)
else:
subsets($\mathrm{S}, \mathrm{k}, \mathrm{n}, \mathrm{i}+1$, count)
$11100 \rightarrow[0,1,2]$
\#backtracking:
\#print (count)
count $=$ count -c
$\mathrm{S}[\mathrm{i}]=0$
$n=5$
$\mathrm{k}=3$
$\mathrm{s}=[0] * \mathrm{n}$
subsets(S, k, n, 0, 0)

What is the complexity of this iterative code?

$$
O\left(n \cdot 2^{n}\right)
$$

Sudoku

2	5			9			7	6	2	5	3	8	9	1	4	7	6	6
			2		4				8	9	7	2	6	4	3	1	5	5
		1	5		3	9			6	4	1	5	7	3	9	2	8	8
	8	9	4		5	2	6		7	8	9	4	3	5	2	6	1	1
1				2					1	3	6	7	2	9	8	5	4	4
	2	5	6			7	3		4	2	5	6	1	8	7	3	9	9
		8	3		2	1			9	6	8	3	5	2	1	4	7	7
			9		7				5	1	2	9	4	7	6	8	3	3
3	7			8			9	2	3	7	4	1	8	6	5	9	2	2

Sudoku: pseudocode

2	5				9				7	6		5		3	8			1	4		7	6
				2		4					8	9		7	2		6	4	3		1	5
		1		5		3		9			6			1	5		7	3	9		2	8
	8	9		4		5		2	6		7	8		9	4		3	5	2		6	1
1					2						1	3	3	6	7		2	9	8		5	4
	2	5		6				7	3		4		2	5	6		1	8	7		3	9
		8		3		2		1			9	6	6	8	3		5	2	1		4	7
				9		7					5		1	2	9		4	7	6		8	3
3	7				8				9		3			4	1		8	6	5		9	2

```
boolean sudoku(int[][] \(S\), int \(i\) )
int \(x=i \bmod 9 \quad\) int old \(=S[x, y]\)
int \(y=\lfloor i / 9\rfloor \quad\) foreach \(c \in C\) do
Set \(C=\operatorname{Set}()\)
if \(i \leq 80\) then
    if \(S[x, y] \neq 0\) then
        \(C\).insert \((S[x, y])\)
    else
        for \(c=1\) to 9 do
            if check \((S, x, y, c)\) then
            \(C\).insert ( \(c\) )
        \(S[x, y]=c\)
        if \(i=80\) then
            processSolution \((S, n)\)
            return True
        if sudoku \((S, i+1)\) then
            - return True
\(S[x, y]=\) old
return False
```


Sudoku: pseudocode

2	5			9				7			2	5		3	8	9		1	4	7		6
			2								8	9		7	2	6		4	3	1		5
		1	5			3	9				6	4		1	5	7		3	9	2		8
	8	9	4			5	2	6			7	8		9	4	3		5	2	6		1
1				2						4	1	3		6	7	2		9	8	5		4
	2	5	6				7	3			4	2		5	6	1		8	7	3		9
		8	3			2	1				9	6		8	3	5		2	1	4		7
			9			7					5	1		2	9	4		7	6	8		3
3	7			8				9		2	3			4	1	8		6	5			2

```
boolean check(int[][] \(S\), int \(x\), int \(y\), int \(c\) )
for \(j=0\) to 8 do
    if \(S[x, j]=c\) then
        return False \(\quad\) \% Column check
    if \(S[j, y]=c\) then
        return False \% Row check
int \(b_{x}=\lfloor x / 3\rfloor\)
int \(b_{y}=\lfloor y / 3\rfloor\)
for \(i_{x}=0\) to 2 do
    for int \(i_{y}=0\) to 2 do
            if \(S\left[b_{x} \cdot 3+i_{x}, b_{y} \cdot 3+i_{y}\right]=c\) then
            \(\llcorner\) return False
return True
```


Sudoku: python code

\#This function prints the sudoku matrix
def process solution(S):
for in range $(0,9)$: \quad if $i>0$ and $i \% 3=0$:
print("-..............
for j in range $(0,9)$:
if $\mathrm{j} \% 3==0$:
print(S.get((i,j), "."), end $=" \backslash t ")$
else:
print("")
\#Given a solution S, checks if c can go in (x, y)
def check_sudoku(S, x, y, c):
for j^{-}in range $(0,9)$:
\#column check
if $\operatorname{s.get}((\mathrm{x}, \mathrm{j}), " ")=\mathrm{c}$:
return False
\#row check
if S.get $((\mathrm{j}, \mathrm{y}), " \mathrm{n})=\mathrm{c}$:
return False
\#diagonal check
$\mathrm{bx}=\mathrm{x} / 13$
for ix in range $(0,3)$:
for iy in range $(0,3)$
if S .get $((\mathrm{bx*3}+\mathrm{ix}, \mathrm{by} * 3+\mathrm{iy}), " \mathrm{n})=\mathrm{c}$: return False
\#finds a backtracking solution to an input sudoku matrix S \#with brute force

def sudoku(S, i):

$x=i \% 9$
$y=i / / 9$
$\mathrm{C}=\operatorname{set}()$
if $\mathrm{i}<=81$:
if $S[(x, y)] \quad!=0$:
C. $\operatorname{add}(\mathrm{S}[(\mathrm{x}, \mathrm{y})])$

else:

for c in range $(1,10)$:
if check sudoku($S, x, y, c)$:
C. $\operatorname{ad\overline {d}}(\mathrm{c})$
old $=$ S.get $((x, y), \quad " ")$
for c in C :
$S[(x, y)]=c$
if $i==80$:
process solution(s)
return $\bar{T} r u e$
if sudoku($\mathrm{S}, \mathrm{i}+1$):
return True
\#print(old)
if old ! = "".
$\mathrm{S}[(\mathrm{x}, \mathrm{y})]=$ old

return False

def initialize(S).
for i in range $(0,9)$:
for j in range $(0,9)$.
$\mathrm{S}[(\mathrm{i}, j)]=0$
mat $=\operatorname{dict}()$
mat = dict()
initialize(mat)
for i in range (0,9):
mat $[(i, i)]=i+1$
print("Initial board:")
process solution(mat)
process solution(mat)
sudoku(mat,0)

Solu			
\|1	8	6	12
14	2	7	\|1
$\mid 5$	9	3	$\mid 8$
12	1	9	14
$\mid 3$	6	4	\|9
$\mid 8$	7	5	$\mid 3$
19	3	8	$\mid 5$
\|6	4	1	$\mid 7$
17	5	2	$\mid 6$

8 queens puzzle

Problem

The eight queens puzzle is the problem of placing eight chess queens on an 8×8 chessboard so that no two queens threaten each other

- History:
- Introduced by Max Bezzel (1848)
- Gauss found 72 of the 92 solutions
- Let's start from the stupidest approach, and let's refine the solution step by step

8 queens puzzle

Idea: every column must contain exactly one queen

$S[0: n]$ coordinates in $\{0 \ldots n-1\}$	permutations of $\{1 \ldots n\}$
ISADMISSIBLE ()	$i==n$
choices (S, n, i)	$\{0 \ldots n-1\}$
pruning	removes diagonals
\# Solutions for $n=8$	$n!=8!=40320$

Comments

- Solutions actually visited $=15720$

```
def queens(S, i, columns):
    for c in columns:
    S[i] = c
    columns.remove(c)
    if (diagonalsOK(S,i)):
        if len(columns)==0:
        printBoard(S)
        else:
            queens(S,i+1,columns)
        columns.add(c)
```

