Scientific Programming:
Algorithms (part B)

Programming paradigms - continued -

Luca Bianco - Academic Year 2019-20
luca.bianco@fmach.it
[credits: thanks to Prof. Alberto Montresor]

Greedy algorithms

Greedy
@ Greedy approach: select the choice which appears "locally
optimal"

e Area of application: optimization problems

Independent intervals

Input

Let S ={1,2,...,n} be a set of interval of the
real line. Each interval [a;, b;[, with ¢ € S, is
closed on the left and open on the right.

@ a;: starting time

@ b;: finish time

R

Problem definition

Find a maximal independent subset, i.e. a subset
that has maximal cardinality and it is composed

by completely disjoint intervals.

— O © 00~ O Ut = WK =,

NN OO OO Ut Ut O W

—_
—_

—_
O W0~ LS

12
13
14

Independent intervals

S O W N N K R W N =

[

s

v

s

v

2

A 4

v

s

v

r

v

3

v

F

v

F 3

v

Tem

po

o .
<

10 11

12 13 14 15

L)

Input

Let S ={1,2,...,n} be a set of interval of the
real line. Each interval [a;, b;[, with i € S, is
closed on the left and open on the right.

@ a;: starting time

@ b;: finish time

5

Problem definition

Find a maximal independent subset, i.e. a subset
that has maximal cardinality and it is composed
by completely disjoint intervals.

= O © 00 O Ut ik W N |,

—_ =

NN OO OO Utw ot O W =

—_

these three intervals are not maximall!

intervals are open on the right, hence these are disjoint

O o0 9 N B WD~

—
— O

ndependent intervals
—
< P
< >
< >
<
< >
Tempo . 4
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Input

Let S = {1,2,...,n} be a set of interval of the
real line. Each interval [a;, b;[, with i € S, is
closed on the left and open on the right.

@ a;: starting time

@ b;: finish time

Problem definition

Find a maximal independent subset, i.e. a subset
that has maximal cardinality and it is composed

by completely disjoint intervals.

) a; bi
1 1 4
2 31 5
3 0] 6
4 51 7
5 31 8
6 51 9
7 6| 10
8 8|11
9 8|12
10 2113
11| 12 | 14

Path to the solution

[We start with dynamic programming

o Let’s define the problem in a mathematical way

o Let’s define the recursive definition

(We move to greedy

o Let’s search for a greedy choice
e Let’s prove that the greedy choice is optimal

e Let’s write an iterative algorithm

Optimal substructure

@ Assume that the intervals are sorted by finish time:

by <bs <...< by

@ Let the subproblem S[i, j| be the set of intervals that start after
the end of 7 and finish before the start of j:
Sli, j] = {klbi < ar < b < aj;}
@ Let’s add two "dummy" intervals

e Interval 0: by = —o0
e Interval n+ 1: any1 = +0

@ The initial problem corresponds to problem S[0,n + 1]

bo bi§ < > [dj an+
ends at - ! < > | starts at +0
S[i,j]

Optimal substructure

(Theorem J

Let A[i, j] be an optimal solution of S[¢, j] and let k£ be an interval
belonging to Az, j]; then
@ The problem S|i, j| is subdivided in two subproblems

o S[i,k|: the intervals of S[i, j] that finish before k S[ik] Stkil
o Sk, j]: the intervals of S[i, j] that start after & Fmm——————— -
——1
e Ali, j] contains the optimal solutions of S[i, k] e S|k, j] — — S
i T
o Ali,j] N S[i, k] is an optimal solution of S|i, k] L)

o Ali,j] N S[k,j] is an optimal solution of S|k, j| optimal solution Afi]

once found k that belongs
to the optimal solution A[i,j],
we need to solve the two
smaller intervals

Optimal substructure

Theorem

Let Ali, j| be an optimal solution of S[i, j] and let k£ be an interval
belonging to Ali, j]; then
e The problem S[i, j] is subdivided in two subproblems

o S[i,k|: the intervals of S[i, j] that finish before k S[i.K] Sk.J]
o S|k, j|: the intervals of S|i, j] that start after k Fmmmm————— - -
——1
e Ali, j] contains the optimal solutions of S|i, k] e S|k, j] — T — —
i N
i, 7] N S[i, k] is an optimal solution of S|i, k] e s

o A
o Ali,j] N S[k,j] is an optimal solution of S[k, j] optimal solution Afi]

Proof once found k that belongs
to the optimal solution A[i,j],
we need to solve the two

We want to prove that if A[i,j] contains the optimal solution of S[i,j] and smaller intervals

kis in A[i,j] then it optimally solves S[i,k] and S[k,j]. By contradiction:

A[i,ﬂ{_ —

|
S[i,k] k S[k,j] { —

| ex. if §[i,k] is better than the corresponding
| intervals in A[i,j] = Ali,j] is not optimal

Optimal substructure

Theorem

Let Ali, j| be an optimal solution of S[i, j] and let k£ be an interval
belonging to Ali, j]; then
e The problem S[i, j] is subdivided in two subproblems

o S[i,k|: the intervals of S[i, j] that finish before k S[i.K] Sk.J]
o S|k, j|: the intervals of S|i, j] that start after k Fmmmm————— - -
——1
e Ali, j] contains the optimal solutions of S|i, k] e S|k, j] — T — —
i N
i, 7] N S[i, k] is an optimal solution of S|i, k] e s

o A
o Ali,j] N S[k,j] is an optimal solution of S[k, j] optimal solution Afi]

Proof once found k that belongs
to the optimal solution A[i,j],
we need to solve the two

We want to prove that if A[i,j] contains the optimal solution of S[i,j] and smaller intervals

kis in A[i,j] then it optimally solves S[i,k] and S[k,j]. By contradiction:

AlL] { = k

|
S[i,k] k S[k,j] { —

| ex. if §[i,k] is better than the corresponding
| intervals in A[i,j] = Ali,j] is not optimal

Recursive formula

(Recursive definition of the solution)
Ali, 5] = Ali, k] U {k} U Ak, j]

(Recursive definition of the cost J

e How to identify £7 By trying all the possibilities

o Let DJi, j] the size of the largest subset A[i, j] C S[i, j] of
independent intervals

Dji.] = 0 Sli,j]=0
, maxes(i ;1 D[, k] + D[k, j] + 1} otherwise

because we chose interval K

Dynamic programming Bl)= | | Sli. gl =9
maxkeS[i,j]{D[z, k| 4+ D[k,j]+ 1} otherwise
import math
#gets intervals within startI (the interval) and endI
def S(intervals, startI, endI):
return [x for x in intervals
if x[0]>=startI[1] and x[1] < endI[@]]
def disjointInt(intervals, i, j, DP):
intervals = [(-math.inf,0), (1,4),(3,5), (0,6), (5,8), (3,8), (5,9), (6,10),(8,11),

s = S(intervals, intervals[i], intervals[j]) (8,12), (2,13), (12,14), (15,math.inf)]
if len(s) == 0:
return 0
else: print(S(intervals, (1,4), (12,14)))
if (i,j) not in DP: print(S(intervals, (3,5), (12,14)))
m'= 0 . print(S(intervals, intervals[@], intervals[-1]))

3 : rint(disjoint intervals(intervals
start = intervals.index(s[0]) P (disy = ("

end = intervals.index(s[-1])

for k in range(start,end+1): [(5, 8), (5, 9), (6, 10), (8, 11)]
if (i,k) not in DP: [(s, 8), (5, 9), (6, 10), (8, 11)]
DP[(i,k)] = disjointInt(intervals, i, k, DP) £(1,4),(3.5),(e,s),(5.8).(3,8).(5.9).(6.19L (8, 11), (8, 12), (2, 13), (12, 14)]

if (k, j) not in DP:
DP[(k, j)] = disjointInt(intervals,k, j, DP)

1
m = max(m, DP[(i,k)] + DP[(k, j)] + 1) 2
DP[(1,j)] = m p
return DP[(1i,j)] .
5
6
def disjoint intervals(intervals): 7
D = dict() g
return disjointInt(intervals, ©, len(intervals)-1, D) 9
‘ 10

11 Tempo

top-down: DP[O,n] 01 23 4 567 8 91011 12131415

Complexity

import math
#gets intervals within startI (the interval) and endI
def S(intervals, startI, endI):
return [x for x in intervals
if x[0]>=startI[1] and x[1] < endI[0]]
def disjointInt(intervals, i, j, DP):

s = S(intervals, intervals[i], intervals[j])

[Dynamic programming

if len(s) == 6:
return ©
else:

@ The definition allows us to write an algorithm based on dynamic
programming or memoization

e Complexity O(n?): we need to solve all potential problems with
i < j, and it costs O(n) for each subproblem in the worst case.

if (i,j) not in DP:
m=0
start = intervals.index(s[0])
end = intervals.index(s[-1])
for k in range(start,end+1):
if (i,k) not in DP:
DP[(i,k)] = disjointInt(intervals, i, k, DP)
if (k, j) not in DP:
DP[(k, j)] = disjointInt(intervals,k, j, DP)

m = max(m, DP[(i,k)] + DP[(k, j)] + 1)

(Can we do better?

e Are we sure that we need to analyze all the values of k7

DP[(i,j)] =m
j] return DP[(1,j)]
def disjoint intervals(intervals):
D = dict()

return disjointInt(intervals, 0, len(intervals)-1, D)

Greedy choice

(Theorem j

Let S[i, j] a non-empty subproblem, and let m be the interval of S[i, j]
that has the smallest finish time, then:

@ the subproblem S[i, m] is empty

@ m is included in some optimal solution of S[i, j]

- Proof o)

We know that: a,, < bn (Interval definition)
We know that: Vk € S[i,j] : b < b (m has smallest finish time)
Then: Vk € S[i, j] : am < by (Transitivity)

If no interval in S[i, j] terminates before a,,, then S[i,m] =0

Input
Let S = {1,2,...,n} be a set of interval of the
real line. Each interval [a;, b;[, with i € S, is
closed on the left and open on the right.

@ a;: starting time

o b;: finish time

Greedy choice

[Theorem)

Let S[i, j] a non-empty subproblem, and let m be the interval of S[i, j]
that has the smallest finish time, then:

@ the subproblem S[i,m] is empty

@ m is included in some optimal solution of S|z, j]

' Proof °)

e Let A’[i, j] an optimal solution of S|z, j]

e Let m' € A'[i, j] be the interval with smallest finish time A’[¢, j]

o Let Afi, 5] = A'[i, 5] — {m'} U{m} be a new solution obtained by
removing m’ from and adding m to A’[¢, j]

e Ali, j] is an optimal solution that contains m, because it has same
size of A'[i, j]

Input
Let S = {1,2,...,n} be a set of interval of the
real line. Each interval [a;, b;[, with i € S, is
closed on the left and open on the right.

@ a;: starting time

@ b;: finish time

e Let A'[i. j] an optimal solution of S|, j]
G ree dy C h O I Ce e Let m' € A'[i,j] be the interval with smallest finish time A’[i, j]
o Let A[i,j] = A'[i,j] — {m'} U{m} be a new solution obtained by
removing m’ from and adding m to A’[i, j]

e Ali, j] is an optimal solution that contains m, because it has same
size of A'[i, j]

L . * m

2 < > 9

3l 1 Consequences of the theorem

4 % 2

g * e It’s not necessary to analyze all values of k

6 - - o Let’s do a "greedy" choice: let’s select the activity m with the
U ¢ > smallest finish time

8 ”

9 - e It is not necessary to analyze two subproblems
10 » N o Remove all the activities that are not compatible with the greedy

‘ N choice

11 Tempo - >

o We only get a subproblem: S[m, j]
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Greedy algorithm

def disjoint greedy(intervals):

#sort pairs by finishing time

#1f not sorted

intervals.sort(key = lambda x : x[1])

S = [0] #first greedy choice

last = 0 - g d

for i in range(1,len(intervals)):

if intervals[i][0] >= intervals[last][1]:

S.append(1i) #oth hoi
e « other greedy choices

return S

O 0 N N W ks W N =
A
v

—
o
7'y
A

—
—
'y
v

Tempo

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

intervals = [(1,4),(3,5), (o,6), (5,8), (3,8), (5,9), (6,10),(8,11),
(8,12), (2,13), (12,14)]
DI = disjoint greedy(intervals) .
print(DI) Complexity?
for i in DI:
print(intervals[i], end = " ")

If input not sorted: O(n log n + n) = O(n log n)
If input sorted: O(n)

[e, 3, 7, 10]

(1, 4) (5, 8) (8, 11) (12, 14)

Greedy algorithm et

&

def disjoint greedy(intervals):

#sort pairs by finishing time

#1f not sorted

intervals.sort(key = lambda x : x[1])

S = [0] #first greedy choice

last = 0 - g d

for i in range(1,len(intervals)):

if intervals[i][0] >= intervals[last][1]:

S.append(1i) #oth hoi
e « other greedy choices

return S

Attivita < >

O 0 9 O W kA W
A
v

A

—
(==}
A
v

[
—_
-
v

Tempo

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

intervals = [(1,4),(3,5), (o,6), (5,8), (3,8), (5,9), (6,10),(8,11),
(8,12), (2,13), (12,14)]
DI = disjoint greedy(intervals) .
print(DI) Complexity
for i in DI:
print(intervals[i], end = " ")

If input not sorted: O(n log n + n) = O(n log n)
If input sorted: O(n)

[e, 3, 7, 10]

(1, 4) (5, 8) (8, 11) (12, 14)

Greedy algorithm P =

def disjoint greedy(intervals):

#sort pairs by finishing time

#1f not sorted

intervals.sort(key = lambda x : x[1])

S = [0] #first greedy choice

last = 0 - g d

for i in range(1,len(intervals)):

if intervals[i][0] >= intervals[last][1]:

S.append(1i) #oth hoi
e « other greedy choices

return S

Attivita < >

O 0 NN N B W
Y
y

—_
(=]
A
v

—
[u—
-
v

Tempo

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

intervals = [(1,4),(3,5), (o,6), (5,8), (3,8), (5,9), (6,10),(8,11),
(8,12), (2,13), (12,14)]
DI = disjoint greedy(intervals) .
print(DI) Complexity
for i in DI:
print(intervals[i], end = " ")

If input not sorted: O(n log n + n) = O(n log n)
If input sorted: O(n)

[e, 3, 7, 10]

(1, 4) (5, 8) (8, 11) (12, 14)

Greedy algorithm -

def disjoint greedy(intervals):

#sort pairs by finishing time

#1f not sorted

intervals.sort(key = lambda x : x[1])

S = [0] #first greedy choice

last = 0 - g d

for i in range(1,len(intervals)):

if intervals[i][0] >= intervals[last][1]:

S.append(1i) #oth hoi
e « other greedy choices

return S

Attivita <

A\ 4

O 0 9 N Bk W N
Y
y

—_
(==}
A
v

—_
—_
3
v

Tempo

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

intervals = [(1,4),(3,5), (o,6), (5,8), (3,8), (5,9), (6,10),(8,11),
(8,12), (2,13), (12,14)]

DI = disjoint greedy(intervals) .

print(DI) Complexity

for i in DI:

print(intervals[i], end = " ") .

If input not sorted: O(n log n + n) = O(n log n)
If input sorted: O(n)

(e, 3, 7, 10]

(1, 4) (5, 8) (8, 11) (12, 14)

Greedy algorithm N o e

2 |
3 |
ult=4 < %
def disjoint greedy(intervals): 5 < =
#sort pairs by finishing time 6 < S
#1f not sorted ‘ _
intervals.sort(key = lambda x : x[1]) 7 | Attivita < >
S = [0] #first greedy choice " >
last = © - greedy 8 = _
for i in range(1,len(intervals)): 9 < >
if intervals[i][0] >= intervals[last][1]: 10 - N
S.append(i) #other greedy choices - -
last = i « o ¥ 11 Tempo < >
return S

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

intervals = [(1,4),(3,5), (o,6), (5,8), (3,8), (5,9), (6,10),(8,11),
(8,12), (2,13), (12,14)]
DI = disjoint greedy(intervals) .
print(DI) Complexity
for i in DI:
print(intervals[i], end = " ")

If input not sorted: O(n log n + n) = O(n log n)
If input sorted: O(n)

[e, 3, 7, 10]

(1, 4) (5, 8) (8, 11) (12, 14)

Greedy algorithm

1 < »
2 |
3 |
ult=4 < >
def disjoint greedy(intervals): 5
#sort pairs by finishing time } i
#1f not sorted 6 [|
intervals.sort(key = lambda x : x[1]) 7 | Attivita .
S = [0] #first greedy choice
i 4= greedy 8 . >
for i in range(1,len(intervals)): 9 < 5
if intervals[i][0] >= intervals[last][1]: 10 - -
S-append (1) gum #other greedy choices - -
last = i 11 Tempo P .
return S

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

intervals = [(1,4),(3,5), (e,6), (5,8), (3,8), (5,9), (6,10),(8,11),
(8,12), (2,13), (12,14)]
DI = disjoint greedy(intervals)

print(DI) Complexity
for i in DI:
print(intervals[i], end = " ")

If input not sorted: O(n log n + n) = O(n log n)
If input sorted: O(n)
[e, 3, 7, 10]
(1, 4) (5, 8) (8, 11) (12, 14)

Greedy algorithm

1 < >
2 |
3 |
4 — >
def disjoint greedy(intervals): 5 1
#sort pairs by finishing time 6 [
#if not sorted ||
intervals.sort(key = lambda x : x[1]) 7 | Attivita L
S = [0] #first greedy choice e >
i 4= greedy ult=8 < >
for i in range(1,len(intervals)): 9 +
if intervals[i][0] >= intervals[last][1]: 10) R
S.append(i) #other greedy choices - -
last = 1 - 9 Y 11 Tempo < >
return S

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

intervals = [(1,4),(3,5), (o,6), (5,8), (3,8), (5,9), (6,10),(8,11),
(8,12), (2,13), (12,14)]
DI = disjoint greedy(intervals) .
print(DI) Complexity
for i in DI:
print(intervals[i], end = " ")

If input not sorted: O(n log n + n) = O(n log n)

If input sorted: O(n)
[e, 3, 7, 10]
(1, 4) (5, 8) (8, 11) (12, 14)

Greedy algorithm

1 % »
2
3 |
4 < >
def disjoint greedy(intervals): 5 -
#sort pairs by finishing time 6 |
#if not sorted [|
intervals.sort(key = lambda x : x[1]) 7 | Attivita L
S = [0] #first greedy choice € >
i 4= greedy ult=8 < >
for i in range(1,len(intervals)): 9 | |
if intervals[i][0] >= intervals[last][1]: 10 | |
S.append(1) #other greedy choices
last = 1 - g Y 11 Tempo < >
return S

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15

intervals = [(1,4),(3,5), (o,6), (5,8), (3,8), (5,9), (6,10),(8,11),
(8,12), (2,13), (12,14)]
DI = disjoint greedy(intervals) .
print(DI) Complexity
for i in DI:
print(intervals[i], end = " ")

If input not sorted: O(n log n + n) = O(n log n)

If input sorted: O(n)
[e, 3, 7, 10]
(1, 4) (5, 8) (8, 11) (12, 14)

Greedy algorithm

def disjoint greedy(intervals):
#sort pairs by finishing time
#1f not sorted
intervals.sort(key = lambda x : x[1])
5% a8 - #first greedy choice
for i in range(1,len(intervals)):
if intervals[i][0] >= intervals[last][1]:

S.append(1i) #other greedy choices
last = i « o ¥ ult=11 Tempo X g

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Attivita

O 0 9 O B W N =

—
=)

return S

intervals = [(1,4),(3,5), (o,6), (5,8), (3,8), (5,9), (6,10),(8,11),
(8,12), (2,13), (12,14)]
DI = disjoint greedy(intervals) .
print(DI) Complexity
for i in DI:
print(intervals[i], end = " ")

If input not sorted: O(n log n + n) = O(n log n)
If input sorted: O(n)

[e, 3, 7, 10]

(1, 4) (5, 8) (8, 11) (12, 14)

Genome rearrangements

Mouse X Chromosome

Human X Chromosome

Transformation of mouse gene order into human gene order on Chr X
(biggest synteny blocks)

[3,5,2,4,1]
[3,2,5,4,1]
[3,2,1, 4, 5]

[1, 2, 3, 4, 5]

Mouse X Chromosome

Genome rearrangements —

3 4 1
CCOoOEmm Mmam)
—

3 2
/= -

|

[CC3 O M
1 2 3 4 5

Human X Chromosome

Syntheny blocks (for a computer scientist: substrings)

@ Re-arrangement: reversing the order of a group of syntheny block

N
@ T=TTQ...T 1T;Tj41 - - TG 1T T 41 - - - Tp—1Tp,

Vi
qr p(Z,]) = mM72.. .ﬂ'i_ﬂ'l'jﬂ'j_l e T 1T T4l - - - Tip—1TT

Example: m = 1243736, T p(3,6) = 1257346

Reversal Distance Problem

Given two permutations, find a shortest series of reversals that
transforms one permutation into another

Reversal Distance Problem

G re e dy S O | uti O N Given two permutations, find a shortest series of reversals that

transforms one permutation into another

o We define prefiz(m) to be the number of already-sorted elements of
T

e A sensible strategy for sorting by reversals is to increase prefiz(m)
at every step.

@ This leads to an algorithm that sorts a permutation by repeatedly
moving its ith element to the i¢th position.

Reversal Distance Problem

G ree dy SO I uti O n Given two permutations, find a shortest series of reversals that

transforms one permutation into another

L = [5,0,1,2,3,4]
print("In list:\n{}\n".format(L))
g , simple reversal sorting(L)
def simple reversal sorting(L): Pre- 5 .

n= len(L) L1 = [2, 4, 1, 3, O]
for i in range(0,n-1): print("\nIn list:\n{}\n".format(L1))
j = L.index(i) simple reversal sorting(L1)
if j 1= 1i:
L{i:j+1] = L[i:j+1][::-1] # rho(1,]) In list:
print(L) [2,4,1,3,0]
[0,3,1,4,2]
[0,1,3,4,2]
0,1,2,4,3]
[0,1,2,3,4]
In list:)
[5,0,1,2, 3, 4] In list:
[5,0,1,2,3,4]
* H 1 [0,5,1,2,3,4]
Simple but not optimal! o [4.3,2,1.0,5]
[0,1,2,5,3,4] [0,1,2,3,4,5]
. . . 0,1,2,3,5,4
Approximated algorithms exist... 1250

Backtracking

[Problem classes (decisional, search, optimization) J

@ Definition bases on the concept of admissible solution: a solution
that satisfies a given set of criteria

[Typical problems]

@ Build one or all admissible solution
e Counting the admissible solutions

e Find the admissible solution "largest", "smallest", in general
"optimal"

Typical problems

(Enumeration

e List algorithmically all possible solutions (search space)

e Example: list all the permutations of a set

(Build at least a solution

e We use the algorithm for enumeration, stopping at the first
solution found

e Example: identify a sequence of steps in the Fifteen game

we explore all
possible solutions
building/enumerating
them and counting or
stopping when we
find one

Typical problems

[Count the solutions

@ In some cases, it is possible
to count in analytical way

e Example: counting the
number of subsets of k
elements taken by a set of n

elements
n!

Kl (n — k)]

e In other cases, we build the
solutions and we count them

e Example: number of subsets
of a integer set S whose sum
is equal to a prime number

Typical problems

[Find optimal solutions]

@ We enumerate all possible solutions and evaluate them through a
cost function

@ Only if other techniques are not possible:
e Dynamic programming
o Greedy

e Example: Hamiltonian circuit (Traveling salesman)

Build all solutions

[To build all the solutions, we use a "brute-force" approach

@ Sometimes, it is the only possible way

@ The power of modern computer makes possible to deal with
problems medium-small problems

o 10! = 3.63 - 10° (permutation of 10 elements)
o 220 =1.05- 10% (subsets of 20 elements)

e Sometimes, the space of all possible solutions does not need to be
analyzed entirely

Backtracking

Approach

e Try to build a solution, if it works you are done else undo it
and try again

e “keep trying, you’'ll get luckier”

Needs a systematic way to explore the search space looking for
the admissible solution(s)

General scheme

[General organization]

@ A solution is represented by a list .S

e The content of element S[i] is taken from a set of choices C' that
depends on the problem

(Examples)

e (' generic set, possible solutions permutations of C'
e (' generic set, possible solutions subsets of C'
e (' game moves, possible solutions a sequence of moves

e (' edges of a graph, possible solutions paths

Partial solutions

@ At each step, we start from a partial solution S where £ > 0
choices have been already taken

e If S[0: k] is an admissible solution, we "process" it
e E.g., we can print it
o We can then decide to stop here or keep going by listing/printing all
solutions

o If S[0: k] is not a complete solution:
o If possible, we extended solution S[0 : k] with one of the possible
choices to get a solution S[0: k + 1]
o Otherwise, we "cancel" the element S[k| (backtrack) and we go
back to to solution S[0: k — 1]

3

=L
G

|.|-_|
"I"'.{

}

EALE

)

lh

Decision tree

@ Decision tree = Search space

Root = Empty solution

Internal nodes = Partial solutions

@ Leaves = Admissible solutions

sjo]_—

Note: the decision tree
is “virtual” we do not
need to store it all...

Decision tree

Decision tree = Search space

Root = Empty solution

Internal nodes = Partial solutions

Leaves = Admissible solutions

spo] _—C

Note: the decision tree
is “virtual” we do not
need to store it all...

Decision tree

Decision tree = Search space

Root = Empty solution

Internal nodes = Partial solutions

Leaves = Admissible solutions

sjo]_—O

S[L

() () () ()
S[2]

Note: the decision tree
is “virtual” we do not
need to store it all...

Decision tree

Decision tree = Search space

°
e Root = Empty solution

e Internal nodes = Partial solutions
°

Leaves = Admissible solutions

sfo]_—C

S[L
() () ® el
S[2]
() () () @) @) @ () ()
S[3]
©®© © @@ © © © @@ © 00 ©®©® © © © @

1)

process or ignore the Note: the decision tree
solution is “virtual” we do not
need to store it all...

Decision tree

Decision tree = Search space

Root = Empty solution

Internal nodes = Partial solutions

Leaves = Admissible solutions

sjo]_—O

S[L

() () () ()
S[2]

1)

solution ignored Note: the decision tree
is “virtual” we do not
need to store it all...

Decision tree

@ Decision tree = Search space

Root = Empty solution

Internal nodes = Partial solutions

Leaves = Admissible solutions

S[0] O

S[L
® () () ()

S[2]

) @ @) & () () (&)
S[3)

© © @ © © @ @@ © ®© @ @ © © © @ @

Note: the decision tree
is “virtual” we do not
need to store it all...

Decision tree

Decision tree = Search space

Root = Empty solution

Internal nodes = Partial solutions

Leaves = Admissible solutions

sjo]_—O

S[L

() () () ()
S[2]

Note: the decision tree
is “virtual” we do not
need to store it all...

Decision tree

Decision tree = Search space

Root = Empty solution

Internal nodes = Partial solutions

Leaves = Admissible solutions

spo] _—C

Note: the decision tree
is “virtual” we do not
need to store it all...

Decision tree

@ Decision tree = Search space

@ Root = Empty solution

e Internal nodes = Partial solutions
°

Leaves = Admissible solutions

so)_—
@ 2
S
@ @ @, ()
sp2)
() L) () 0 () & &)
s

1)

solution processed Note: the decision tree
is “virtual” we do not
need to store it all...

Pruning

@ "Branches" of the trees that do not bring to admissible solutions
can be "pruned"
@ The evaluation is done in the partial solutions corresponding to

internal nodes

Even though the tree
might be exponential, with
pruning we might not need
to explore it all

Note: the decision tree
is “virtual” we do not
need to store it all...

Pruning

e "Branches" of the trees that do not bring to admissible solutions
can be "pruned"

@ The evaluation is done in the partial solutions corresponding to
internal nodes

Even though the tree
might be exponential, with
pruning we might not need
to explore it all

General schema to find a solution (modify as you like)

boolean enumeration(OBJECT([] S, int n, int ¢, ...) «—

; : —= S is the list of choices
SET C = choices(S,n,1,...) % Compute C based on S[0:i— 1] pisthe maximum number of

foreach c € C do choices
S['i-] —c i is the index of the choice | am
g s] currently makin
if isAdmissible(.S, n,7) then y o

... other inputs

if processSolution(S,n,1,...) then
L return True

if enumeration(S,n,i +1,...) then The recursive call will
L return True test all solutions unless
they return true

return False

1. We build a next choice with choices(...) based on the previous choices S[0:i-1]: the
logic of the code goes here

For each possible choice, we memorize the choice in S[i]

If S[i] is admissible then we process it and we can either stop (if we needed at least
one solution) or continue to the next one (return false)

4. Inthe latter case we keep going calling enumeration again to compute choice i+1

w N

boolean enumeration(OBJECT|[] S, int n, int 7, ...)

En u meration ?j;i;ccgozeséf,n,i,...) % Compute C based on S[0: i — 1]

Si]=c
if isAdmissible(S, n,7) then
\\ if processSolution(S, n,1,...) then
L return True

if enumeration(S,n,i +1,...) then
L return True

return False

e §: list containing the partial solutions
@ i: current index

.. additional information

e (: the set of possible candidates to extend the current solution

isAdmissible(): returns True if S[0 : ¢] is an admissible solution

@ processSolution(): returns

e True to stop the execution at the first admissible solution
e False to explore the entire tree

Subsets problem

List all subsets of {0,...,n —1}

def process solution(S):

for i in range(len(S)):
print(S[i], end = " ")
print("")

ratira False — False: we want all solutions

def subsets(S,n,i):
#print("subsets({},{},{})". format(S,n,1i)) choice: keep or
C = [1, 0] if i<n else [] discard element
for c in C:
S[i] = ¢ an admissible solution has decided if to
if i == n-1: < keep or discard all elements
#print("\t\tS:{} c:{} 1i:{}".format(S,c,1))
if process solution(S):
return True
else:
#print("\tCalling: subsets({},{},{})".format(S,n,i+1))
subsets(S,n,i+1)
return False
n=>5
S = [0]*n
subsets(S,n,0)

[cNoNoNoNoNoNoNoNoNoNoNoNoNo o N o RN R R R i i Sl el i e e e

DO HKHFFHFRRFRFRRFRERENOOOOOOO D H I

COPOHHHHOOOOHHHHOOOORHKHHOOO® K H H

OCOHHOOHHOOHHOOHHOOHHOOHHOOHHOO® -

OHOHOHOHOHOHOHOHOHOHOHOHOOHO O MO M

boolean enumeration(OBJECT[] S, int n, int 7, ...)

SET C' = choices(S, n, i,...) % Compute C based on S[0:i—1]
foreach c € C' do

Slil=c

if isAdmissible(S, n, i) then

L if processSolution(S, n,i,...) then

L return True
if enumeration(S,n,i+1,...) then
L return True

return False

subsets([0, 0, 0, 0, 0],5,0)
Calling: subsets([1, 0, 0, 0, 0],5,1)
subsets([1, 0, 0, 0, 0],5,1)
Calling: subsets([1, 1, 0, 0, 0],5,2)
subsets([1, 1, 0, 0, 0],5,2)
Calling: subsets([1, 1, 1, 0, 0],5,3)
subsets([1, 1, 1, 0, 0],5,3)
Calling: subsets([1, 1, 1, 1, 0],5,4)
subsets([1, 1, 1, 1, 0],5,4)
S1,1,1,1,11c1i4
11111
S:1,1,1,1,0]c:0i:4
11110
Calling: subsets([1, 1, 1, 0, 0],5,4)
subsets([1, 1, 1, 0, 0],5,4)
S1,1,1,0,1]c:1i4
11101
S:1,1,1,0,0]c:0i:4
11100
Calling: subsets([1, 1, 0, 0, 0],5,3)
subsets([1, 1, 0, 0, 0],5,3)

Subsets problem

[List all subsets of {0,...,n —1}

\ J

@ There is no pruning. All the possible space is explored.
But this is required by the definition of the problem

@ In which order sets are printed?

def process solution(S):
for i in range(len(S)):
print(s[i], end = " ")
print("")
return False

def subsets(S,n,i):
#print("subsets({},{},{})". format(S,n,1i))
C = [1, 0] if i<n else []
for c in C:
S[i] = ¢
if i == n-1:
#orint("\t\tS:{} c:{} i:{}".format(S,c,1))
if process_solution(S):
return True
else:
#print("\tCalling: subsets({},{},{})".format(S,n,i+1))
subsets(S,n,i+1)
return False
n=>5
S = [0]*n
subse

ubsets(S,n,0)

Computational complexity O(nZ") (= i.e. 2"n sets, printing each costs n)

@ [s it possible to think to an iterative version, ad-hoc for this

problem?
(non-backtracking)

Subsets problem

n' List all subsets of {0,...,n —1}

\

@ There is no pruning. All the possible space is explored.
But this is required by the definition of the problem

def process solution(S):
for i in range(len(S)):
print(s[i], end = " ")
print("")
return False

def subsets(S,n,i):
#print("subsets({},{},{})". format(S,n,1i))
C = [1, 0] if i<n else []
for c in C:
S[i] = ¢
if i == n-1:
#orint("\t\tS:{} c:{} i:{}".format(S,c,1))
if process_solution(S):
return True
else:
#print(“\tCalling: subsets({},{},{})".format(S,n,i+1))
subsets(S,n,i+1)
return False
n=>5
S = [0]*n
subse

ubsets(S,n,0)

Computational complexity O(nZ") (= i.e. 2”n sets, printing each costs n)

@ In which order sets are printed? (=111 firstand then values decrease..)

@ [s it possible to think to an iterative version, ad-hoc for this

problem?
(non-backtracking)

def subsets(n):

““‘--~§§§§§~_~_~§‘ for i in range(0,2%*n):
#1 1s a bit mask!

print("{0:05b}".format(i))

subsets(5)

Subsets problem:iterative code

(List all possible subsets of size k of a set {0,...,n — 1}

Subsets problem:iterative code

List all possible subsets of size k of a set {0. WP, B].} 000 f100!f010! om 11000 101 110 11

What is the complexity of this iterative
def subsets(n, k):

?
for i in range(0,2**n): «—— all subsets code:

#1 1s a bit mask! .
b = "{0:05b}". format(i) (cost: O(2"n)) O(n -2")

sets = [x for x in range(len(b)) if int(b[x]) == 1]

if len(sets) == k:
print("{} --> subset: {}".format(b,sets)) creation of the

subsets (cost: O(n))

subsets(5,3) ‘\\\\\\\\\\\\\
printing subsets

(cost: O(n))

00111 --> subset: [2, 3, 4]

01011 --> subset: [1, 3, 4]

01101 --> subset: [1, 2, 4]

01110 --> subset: [1, 2, 3]

10011 --> subset: [0, 3, 4]

10101 --> subset: [0, 2, 4]

10110 --> subset: [0, 2, 3] H H

57661 sibscte 16 141 How many solutions are we testing?
11010 --> subset: [0, 1, 3] &

11188 ey BubsEEs 18, Ly 2 2 no pruning... can we improve this?

Subsets problem: bactracking

List all possible subsets of size k of a set {0,...,n — 1} oo [100!0i0! o [1000 100 1o
n=3, k=1
def process solution(S):
sets = []
for i in range(len(S)):
print(Ss[i], end = "")
£ L | I

sets.append (i) Still generates 2”n subsets, for each it will count how
print(" -> {}".format(sets)) we want all solutions many 1s are present and finally print only the ones having
Sl L
FREREN TR e a correct number of 1s.

def subsets(S, k, n, i, count):
Cc = [1,0]

for c in C: count how many 1s What is the complexity of this backtracking
S[i] = . .
cf,?,.lt =ccount +C admissible solutions code?
Al wined: / have k 1s
if count == k: 0(” _ 2n)
#fgcl:gstsfséolution(s) 2L106. [85) 2. 2]
e 11010 -> [0, 1, 3]
subsets(s, k, n, i+1, count) 11001 -> [0, 1, 4] ; PR
foaiktracking: 10110 -> [0, 2. 3] How many solutions are we testing?®
#print(count) 10101 -> [0, 2, 4] on
’ count = count -c 10011 -> [0, 3, 4]
—_ 01110 -> [1, 2, 3] . . .
Ezs 01101 -> [1, 2, 4] no pruning... can we improve this?
S = [0]*n 01011 -> [1, 3, 4]
subsets(S, k, n, 6, 0) 00111 -> [2, 3, 4]

Subsets problem: bactracking & pruning

List all possible subsets of size k of a set {0,...,n — 1} “ 000 [100/010] o1 (100 101 110 111

#Pruning!
def subsets(S, k, n, i, count):

if count < k and count + (n-i) >= k: generate only solutions that can potentially be admissible!
C = [1,0] ‘//’/”’,,,,///’;::::=’
else:

C=1[1]
for ¢ in C:
S[i] = c i i is i [
count = count + ¢ What is the complexity of this iterative
if count == k:
#print(s) code?
process_solution(s) O(n-2"
else: s
subsets(s, k, n, i+l, count) ﬁ&l)(;g : {g' i :?3}
#backtracking: 11001 -> [e' 1' 4]
#print(count) 10110 -> [e' 2' 3]
count = count -c 10101 -> [e' 2' 4]
- S[i]l = @ 10011 -> [0, 3, 4]
z . 5 01110 -> [1, 2, 3]
; - . e11e1 -> [1, 2, 4]
= n 01011 -> [1, 3, 4]
subsets(S, k, n, @, 0) 00111 -> [2, 3, 4]

Sudoku

9

5

6

8

Sudoku: pseudocode

215 9 7|6 20153891476
2 4 819|7(2]|6[4|3[1]5

105 39 614[1]|5]7(3(9]2]8

8191 4 5216 718191435261

il 2 4 1{3(6(71219854
21516 713 4125618 7[3]9
813 2|1 9168352147

9 7 51112194 (7(6[8]3

307 8 912 317141 1(8(6(5]9]2

boolean sudoku(int[][] S, int)

int z = ¢mod 9
int y = [i/9]
SET C' = Set()
if 7 < 80 then
if S[z,y] # 0 then
‘ C'insert(S[z,y])
else
forc=1to 9 do
L if check(S, x,y,c) then
| Clinsert(c)

int old = S|z, y|
foreach ¢ € C' do
S['T: 3/] —C
if i = 80 then
L processSolution(.S, n)
return True

if sudoku(.S,i + 1) then
| return True

Slz,y] = old
return False

Sudoku: pseudocode

W G|l |[N]|o|oo |

-~ | = | W | o = | o

=N o Gl o | © =N w

= o | W D | N = ot [N | 0o

o | k== N |[w| N | ©

(=2 B) 0 | © [W [=

RO | = ~1 | 0o | O W | =

O |0 (s~ w oD N[~

Nw | N[|o e |[~|o|o|o

boolean check(int[]|[] S, int z, int y, int ¢)

for j =0 to 8 do

if S[z,j] = c then
L return False

if S[j,y] = ¢ then
L return False

int b, = |z/3]
int b, = |y/3]
for i, =0 to 2 do
for int 7, =0 to 2 do
L if S[bz -3 +ig,by - 3+ iy] = c then
| return False

return True

% Column check

% Row check

% Subtable check

Sudoku: python code

#This function prints the sudoku matrix
def process solution(S):
for i in range(0,9):
ifi>0and i% 3 ==

L 1) o
for j in range(0,9):
if j %3 == 0:
print("|", end = "*)
print(S.get((i,j), "."), end = "\t")
else:
print("")

#Given a solution S, checks if c¢ can go in (x,y)
def check sudoku(S,x,y, c):
for j in range(0,9):
#column check
if s.get((x,j),"") == c:
return False
#row check
if S.get((j,y).,"") == c:
return False
#diagonal check
bx = x //3
by =y //3
for ix in range(0,3):
for iy in range(0,3):
if S.get((bx*3 + ix, by*3+iy),"") == c:
return False
return True

#finds a backtracking solution to an Input sudoku matrix S
#with brute force
def sudoku(S, i):

x=1i%9
y=1//9
C = set()

if l <= 8Y:
if S[(x,y)] = o:
C.add(S[(x,y)])
else:
for ¢ in range(1,10):
if check sudoku(S,x,y, c):
C.add(c)

old = S.get((x,y), "")
for c in C:
S[(x,y)] = ¢
if i == 86:
process _solution(S)
return True
if sudoku(S,i+1):
return True

#print(old)
if old 1= "": Initial board:
S[(x,y)] = old |1 0 [1o
|e 2 0 le
] 0 3]
return False
|e 0 0 14
|e 0 0 le
|e 0 0]
def initialize(S): |o 0 0 |0
for i in range(0,9): |o o o |0
for j in range(0,9): 1o 9 9 18
s[(i,j)1 =0
Solution:
mat = dict() |1 8 6 12
initialize(mat) |4 2 7 |11
for i in range(0,9): I5 9 3 18
mat[(i,i)] = i+l
print("Initial board:") I§ é 2 {;
process_solution(mat) | 7 5 13
print("\n\nSolution:")
sudoku(mat,0) |9 3 8 |
|6 4 1 17
|17 5 2 16

8 queens puzzle

Problem
The eight queens puzzle is the problem of placing eight chess queens on
an 8 x 8 chessboard so that no two queens threaten each other
e History:
e Introduced by Max Bezzel
(1848)
e Gauss found 72 of the 92
solutions

o Let’s start from the stupidest
approach, and let’s refine the
solution step by step

8 queens puzzle

(Idea: every column must contain exactly one queen

S[0 : n] coordinates in

permutations of {1...n}

{0...n—1}

ISADMISSIBLE() t==mn
choices(9,n,) {0...n—-1}
pruning removes diagonals
Solutions for n = 8 n! = 8! = 40320

(Comments

@ Solutions actually visited = 15720

def queens(S, i, columns):
for ¢ in columns:
S[i] = ¢
columns.remove(c)
if (diagonalsOK(S,i)):
if len(columns)==0:
printBoard(S)
else:
queens (S,i+1, columns)
columns.add(c)

